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Abstract This chapter shows how UPPAAL is applied in schedulability analysis of
satellite attitude and orbit control software used in Herschel/Planck mission. Our
method transforms the schedulability analysis into reachability analysis performed
by UPPAAL. The chapter briefly describes the schedulability requirements and elab-
orates on the modeling framework designed to handle single processor hardware
with a fixed priority preemptive scheduler, detailed task specifications, two resource
sharing protocols and voluntary task suspension. The results include qualitative an-
swers (whether the system is schedulable) as well as quantitative (response and
blocking time estimates) which are comparable with classical response-time analy-
sis.
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1 Introduction

The goal of schedulability analysis is to check whether all tasks finish before their
deadline. Traditional approaches like [Burns(1994)] provide generic frameworks
which assume worst-case scenario where consecutive response-times are calculated
and compared with deadlines. Often, such conservative scenarios are never realized
and thus negative results from such analysis may be too pessimistic. The idea is
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to base the schedulability analysis on a system model with possibly more details,
taking into account specifics of individual tasks. In particular this will allow a safe
but far less pessimistic schedulability analysis to be settled using real-time model
checking. Moreover, the model-based approach provides a self-contained visual rep-
resentation of the system with formal, non-ambiguous interpretation, simulation and
other possibilities for verification and validation.

Our model-based approach is motivated by and carried out on example applica-
tions in a case study of Herschel-Planck satellite system. Compared with classical
response-time analysis our model-based approach is found to uniformly provide
less pessimistic response-time estimates and allow to conclude schedulability of all
tasks, in contrast to negative results obtained from the classical approach.

1.1 The Herschel-Planck Mission

The Herschel-Planck mission consists of two satellites: Herschel and Planck. The
satellites have different scientific objectives and thus the sensor and actuator con-
figurations differ, but both satellites share the same computational architecture. The
architecture consists of a single processor, a real-time operating system (RTEMS),
a basic software layer (BSW) and an application software (ASW).

The goal of the study is to show that ASW tasks and BSW tasks areschedulable
on a single processor with no deadline violations. The tasksuse preemptive fixed
priority scheduler and a mixture of priority ceiling and priority inheritance protocols
for resource sharing and extended deadlines (beyond period). In addition, some tasks
need to interact with external hardware and effectively suspend their execution for a
specified time. Due to suspension, this single-processor system has some similarity
to multi-processor systems since parts of activities are executed elsewhere and the
classical worst-case response-time analysis (applicableto single-processor systems)
is pushed to its limits. One of the results of [Palm(2006)] isthat one task may miss
its deadline on Herschel (and thus the system is not schedulable) but this violation
has never been observed in neither stress testing nor deployment.

Figure 1 shows the parameters which describe each periodic task: period defines
how often the task is started, offset – how far into the cycle the task is started (re-
leased), deadline is measured from the instance when task isstarted and worst-case
execution time within deadline.
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Offset

release

WCRT
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time

Fig. 1: Task time bounds.
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Some tasks access shared resources and those are protected by semaphore lock-
ing to ensure exclusive usage. Sometimes tasks use resources repeatedly (locking
and unlocking several times). When the resource semaphore islocked, a task may
suspend its execution by calling hardware services and waiting for the hardware to
finish thus temporarily releasing the processor for other tasks. The processor may
be released multiple times during one semaphore lock. In response-time analysis,
the processor utilisation is computed by dividing the sum ofworst-case execution
times by the duration of analysed time window.

Table 1 shows the description of the primary functions task from [Palm(2006)].
The task consists of six activities. Each activity is described by two numbers: CPU
time / BSW service time (BSW service time is included in CPU time), followed
by resource usage pattern if any. The resource usage is described by the following
parameters:

LNS – total number of times the CPU has been released while theresource was
locked (task suspension count).
LCS – total time the CPU has been released while the resource was locked (task
suspension duration).
LC – total time the resource has been locked.
MaxLC – the longest time the resource has been locked.

For example “Data processing” takes 20577µs in total, from which it has locked
the resourceIcb R for 1600µs, and from which CPU has been released (execution
suspended) for 1200µs.

Table 1: The sequence of primary functions task from [Palm(2006)].

Primary Functions
- Data processing 20577/2521

Icb R(LNS: 2, LCS:1200, LC: 1600, MaxLC: 800)
- Guidance 3440/0
- Attitude determination3751/1777

Sgm R(LNS: 5, LCS:121, LC: 1218, MaxLC: 236)
- PerformExtraChecks 42/0
- SCM controller 3479/2096

PmReq R(LNS: 4, LCS:1650, LC: 3300, MaxLC: 3300)
- Command RWL 2752/85

2 Model-Checking Schedulability Methodology

The main idea is to translate schedulability analysis problem into a reachability
problem for timed automata and use the real-time model-checker UPPAAL to check
that none of the deadlines are violated, derive worst-case blocking and response-
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times and processor utilization. We refer to the previous chapter for UPPAAL con-
cepts.

Figure 2 shows the work-flow of response-time analysis (performed by Terma
A/S) and schedulability analysis using UPPAAL: the task timing informations are
obtained from ASW and BSW documentation, worst-case execution times (WCET)
of BSW are obtained from BSW documentation [Terma A/S(Issue9)] and ASW
timings are obtained from simulation measurements. In addition the UPPAAL model
uses information about the individual task flows, i.e. the timing of resource locks,
CPU execution and suspension.
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Fig. 2: Work-flow of schedulability analysis.

The UPPAAL framework consists of the following process models: a fixed prior-
ity preemptive CPU scheduler, a number of task models, and one process for ensur-
ing global invariants. We provide different templates for task models: one for peri-
odic tasks and several for tasks with dependencies, all of which are parameterised
with explicit sequence of task actions and may be customisedto a particular resource
sharing protocol. We also investigate the scalability of the approach by allowing dif-
ferent best-case execution times (BCET) as a percentage discount from WCET. In
practice it is possible to put realistic BCETs, but we choosethis parametrisation for
the sake of systematic exploration. Our approach uses the same task descriptions
as [Palm(2006)].

The following outlines the main modelling ingredients:

• One template for the CPU scheduler.
• One template for the “idle” task to keep track of CPU usage times.
• One template for all BSW tasks, where resources are locked based on priority

inheritance protocol.
• One template for theMainCycle ASW task, which is released periodically, starts

other ASW tasks and locks resources based on the priority ceiling protocol.
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• One template for all other ASW tasks, which are released by synchronisations,
and locks resources based on priority ceiling protocol.

• Task specialisation is performed during process instantiation by providing indi-
vidual list of operations encoded into aflow array.

• Each task (either ASW or BSW) uses the following clocks and data variables:

– Task and its clocks are parameterised by an identifierid.
– A local clockx controls periodic releases of the task. The task then moves to

an error state ifx is greater than its deadline.
– A local clocksubcontrols progress and execution of individual operations.
– A local integeric is an operation counter.
– The worst-case response-time for taskid is modelled by a stopwatchWCRT[id]

which is reset when the task is started and is allowed to progress only when
the task is ready (global invariantWCRT[id]′ == ready[id] ensures that). The
worst-case response-time is estimated as maximum value ofWCRT[id].

– An error location is reachable anderror variable is set totrue if there is a
possibility to finish after deadline.

Further we explain the most important model templates, while the complete
model is available for download at http://www.cs.aau.dk/∼marius/Terma/ .

2.1 Scheduler Model

Figure 3a shows the model of the scheduler. In the beginning,the Scheduler ini-
tialises the system (computes the current task priorities by computing default prior-
ity based onid and starts the tasks with zero offset) and in locationRunningwaits
for tasks to become ready or current task to release the CPU resource. When some
task becomes ready, it adds itself to thetaskqueue and signals on theenqueue
channel, thus moving the Scheduler to locationSchedule. From the location
Schedule, the Scheduler compares the priority of a current taskcprio[ctask]
with the highest priority in the queuecprio[taskqueue[0]] and either returns
to Running (nothing to reschedule) or preempts the current taskctask, puts it
into taskqueue and schedules the highest priority task fromtaskqueue.

A task releases the CPU by a signalrelease[CPU R], in which case the
Scheduler pulls the highest priority task fromtaskqueue and optionally notifies
it with broadcast synchronisation on channelschedule.

Thetaskqueue always contains at least one ready task:IdleTask. Figure 3b
shows howIdleTask reacts to Scheduler events. It also computes the CPU usage
time using stopwatchusedTime and the total CPU load is then calculated as
usedTime

globalTime.
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main()

cprio[ctask]>=
cprio[taskqueue[0]]

Preempt

Running

Schedule

taskqueue[0]>0 &&
cprio[ctask]<
cprio[taskqueue[0]]

preempt[ctask]!

enqueue[id]?

schedule[ctask]!

release[CPU_R]?
add(taskqueue, id)runs[ctask]=0,

ctask=poll(taskqueue)

id: taskid_t

runs[ctask]=1

add(taskqueue,ctask),
runs[ctask]=0,
ctask=poll(taskqueue)

initialize!

(a) Template for CPU scheduler.

preempt[0]?

schedule[0]?

idleTime’==0
CPUIdleCPUUsed

usedTime’==0

(b) Idle task model.

Fig. 3: Models for CPU scheduler and the simplest task.

2.2 Tasks Templates

Task template is a generalization of a task process. We provide three task tem-
plates which share the same timed automata structure exceptsome minor differ-
ences: BSW (started periodically, uses priority inheritance), ASW (started by other
task, uses priority ceiling) and MainCycle (started periodically, starts other tasks
and uses priority ceiling). The templates are instantiatedwith a concrete task de-
scription: period, offset, deadline and resource usage sequence we call task flow.

Figure 4 shows a template used byMainCycle which is started periodically. At
first MainCycle waits for Offset time to elapse and moves to locationIdle
by setting the clockx to Period. Then the process is forced to leave theIdle
location immediately, to signal other ASW tasks, add itselfto the ready task queue
and arrive to locationWaitForCPU. WhenMainCycle receives notification from
the scheduler it moves to locationGotCPU and starts processing commands from
theflow array.

Declaration of task flow array type is shown in Fig. 5a:flow t is an array of
operationsoperation t, and operations are tuples of operation typeoptype t,
resource identifierresid t and a timing argumenttime t which is an inte-
ger.Figure 5b shows the beginning of the flow for the primary function task.

There are four types of operations:

1. LOCK is executed from locationtryLock where the process attempts to ac-
quire the resource. It blocks if the resource is not available and retries by adding
itself to the processor queue again when the resource is released. It continues to
locationNext by locking the resource if the resource is available.

2. UNLOCK simply releases the resource and moves on to location Next. The
implementation of locking and unlocking for both protocolsis straightforward
and fits into 28 lines of code.
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WaitForCPU WaitForCPU2
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starting
x<=Period

sub<=
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&& sub<=0
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sub<=flow[ic].delay

x>Deadline

runs[id] &&
END!=flow[ic].cmd &&
x<=Deadline COMPUTE==

flow[ic].cmd
runs[id] &&
sub>=flow[ic].delay−
  flow[ic].delay*BCD/100

SUSPEND==
flow[ic].cmd

LOCK==
flow[ic].cmd

UNLOCK==flow[ic].cmd !avail(flow[ic].res)
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GotCPU

x>Deadline

x>Deadline
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sub==flow[ic].delay

runs[id] &&
END==flow[ic].cmd &&
x<=Deadline

x==Period

x>Deadline

x==Offset

runs[id] &&
job[id]>=WCET−
  WCET*BCD/100 &&
x<=Deadline

sub=0

error=1 unlockCeil(flow[ic].res, id),
ic++, sub=0

susp[id]=false,
ic++, sub=0

ic++, sub=0

susp[id]=true,
sub=0

error=1

x=0, job[id]=0,
WCRT[id]=0, ready[id]=1

blocked[id]=0

lockCeil(flow[ic].res, id),
ic++, sub=0

ic=0, job[id]=0,
WCRT[id]=0, ready[id]=0

blocked[id]=1

schedule[id]?

release[CPU_R]!

schedule[id]?

enqueue[id]!

StartASW!

enqueue[id]!

StartASW!

error=0

error=1

enqueue[id]!

error=1

release[flow[ic].res]!

release[flow[ic].res]?

release[CPU_R]!

release[CPU_R]!

Fig. 4:MainCycle task: periodically starts ASW functions.

optypet ::= END | COMPUTE| LOCK |
UNLOCK | SUSPEND

resid t ::= Icb R | SgmR | PmReqR |
OtherR

time t ::= int[0, 10000000]
operationt ::= optypet resid t time t

flow t ::= operationt*

(a) Declaration of task flow type.

ic: cmd: res: delay:
0 LOCK Icb R 0
1 COMPUTECPU R 400
2 SUSPEND CPU R 1200
3 UNLOCK Icb R 1200
4 COMPUTECPU R 20177

. . . . . . . . .
18 END

(b) Flow of primary functions task.

Fig. 5: Structure and an instance of task flow.

3. SUSPEND releases the processor for the specified amount oftime, adds itself to
the queue and moves to locationNext. The task progress clockjob[id] is not
increasing but the response measurement clockWCRT[id] is.

4. COMPUTE makes the task stay in locationComputing for the specified dura-
tion of CPU time, i.e. the clocksub is stopped whenever the task is preempted
(runs[id] is set to 0). Once the required amount of CPU time is consumed,the
process moves on to locationNext. For scalability study we relax the guard by
BCD percent of time, allowing the task to finish slightly earlierthan WCET.

From locationNext, the process is forced by theruns[id] invariant to continue with
the next operation: if it is not the END and it is running, thenit moves back to
GotCPU to process next operation, and it moves toFinishing if it’s the END. In
theFinishing location the process consumed CPU for the remaining time so that
the complete WCET is exhausted and then it moves back toIdle. From locations
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Next andFinishing the outgoing edges are constrained to check whether the
deadline has been reached since the last task release (whenx was set to 0), and
edges force the process intoError location ifx> Deadline.

The flow for MainCycle is trivial: it computes for its WCET while keeping a
lock onSgm R. A more sophisticated example of flow is shown in Listing 1 where
the timing numbers are taken from description in Table 1: thetask attempts to lock
the resourceIcb R, when the resource is locked it actively uses the CPU for 400µs
(because according to the description the resource is locked for 1600µsand CPU is
not used for 1200µsdue to suspension), then CPU is suspended for 1200µs, Icb R
is released and CPU is used for the remaining task execution.

Listing 1: The data processing part of operation flow forPrimaryF task.
�

const ASWFlow t PF f = { // Primary Functions ,−−−−− Data processing:
{ LOCK, Icb R, 0 }, // 0) acquire lock on IcbR
{ COMPUTE, CPUR, 1600−1200}, // 1) execute with IcbR being locked
{ SUSPEND, CPUR, 1200}, // 2) suspend/ release CPU, while IcbR is locked
{ UNLOCK, Icb R, 0}, // 3) release lock on IcbR
{ COMPUTE, CPUR, 20577−(1600−1200)}, // 4) execute without IcbR
...

};
� �

The template for BSW tasks is almost the same asMainCycle, except that 1)
BSW tasks do not have to start other ASW tasks and thus fromIdle they go di-
rectly to WaitForCPU with enqueueing edge, 2) instead of the ceiling protocol
(lockCeilandunlockCeil) it uses priority inheritance (lockInhandunlockInh) and 3)
it boosts the owners priority by callingboostPrio(flow[ic].res, id) on the edge from
tryLock toBlocked. BSW tasks have their own local clockx, whileMainCycle
shares itsx with other ASW tasks.

We use only LCS (CPU suspension time while resource is locked) and LC (total
locking time) from Table 1, where we assume that LC−LCS is the CPU busy time
while the resource is locked.

Listing 1 shows an example of detailed control flow structurefor PrimaryF task,
where the numbers mean the time duration and comments relateeach step to an item
in Table 1.

2.3 System Model Instantiation

Listing 2 shows how tasks are instantiated with task identifier, offset, period, flow,
deadline and shared ASW clock. In total there are 32 tasks, where id=13 is reserved
for priority ceiling.

Listing 2: Task instantiation.
�

// taskid , Offset ,Period , flow , WCET, Deadline
RTEMS RTC = BSW(1, 0, 10000, WCETf, 13, 1000);
AswSyncSyncPulselsr=BSW(2, 0,250000, WCETf, 70, 1000);
Hk SamplerIsr = BSW(3,62500,125000, WCETf, 70, 1000);
...

mainCycle = MainCycle(16,20000,250000, 400, 230220, ASWclock);
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...
primaryF = ASW(21,StartASW,Done, PFf, 34050, 59600, ASWclock);
...

Bkgnd P = BSW(33, 0,250000, WCETf, 200, 250000);
� �

Listing 3 shows system declaration with a . The variablecycle counts cy-
cle number as an heuristic progress measure which allows UPPAAL to use the
sweep-line method to reduce the verification memory consumption. The cycle
is incremented after a period of 250ms and is being reset after some specified
CYCLELIMIT in theGlobal process. The processGlobal also takes care of global
invariants onjob[i] andWCRT[i] stopwatches of each taski.

Listing 3: System declaration using UPPAAL priorities.
�

system Scheduler , RTEMSRTC, AswSyncSyncPulselsr, HkSamplerIsr, SwCycCycStartIsr,
SwCyc CycEndIsr, Rt1553Isr, Bc1553Isr, SpwIsr, ObdhIsr, RtSdbP 1, RtSdbP 2, RtSdbP 3,
FdirEvents , NominalEvents1, mainCycle, HkSamplerP 2, HkSamplerP 1, Acb P, IoCycP,
primaryF, rCSControlF, ObtP, Hk P, StsMonP, TmGenP, SgmP, TcRouterP, CmdP,
NominalEvents2, secondF1, secondF2, BkgndP, IdleTask , Global;

progress { cycle ; }
� �

TIME<=LIMIT &&
globalTime<=cycle*CYCLE &&
forall(i: taskid_t) job[i]’==runs[i] &&
forall(i: taskid_t) WCRT[i]’==ready[i]

globalTime==cycle*CYCLE 
&& cycle==CYCLELIMIT

globalTime==cycle*CYCLE 
&& cycle<CYCLELIMIT

cycle=1, globalTime=0,
usedTime=0, idleTime=0,
WCRT[0]=0

Done?

cycle++

Fig. 6:Global process enforce invariants on stopwatches and cyclic progress.

2.4 Verification Queries

The following is a list of queries used to check schedulability properties:

• Check if the system is schedulable (the error state is not reachable):
E<> error

• Check if any task can be blocked at all:E<> exists(i:taskid t) blocked[i]
• Find the total worst CPU usage:sup: usedTime, idleTime
• Find the worst-case response-times:sup: WCRT[0], WCRT[1], ... WCRT[33]
• Find worst-case blocking times, whereB[i] is a stopwatch growing when taski is

blocked:sup: B[0], B[1], B[2], ... B[33]

A sup-query explores the entire reachable state space and computes the maximum
(supremum) value of an argument expression. This is particularly useful for com-
puting several bounds at once.
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3 Results

Our results provide three important pieces of information:visualisation of a sched-
ule in a Gantt chart, worst-case response-times estimates and CPU utilisation and
verification benchmarks.

A Gantt chart can be used to visualise a trace of the system, thus providing a rich
picture for inspection. For example, the generated Gantt chart in Figure 7 shows that
Cmd P is blocked more than 5 times during the first cycle, while blocking times for
PrimaryF (21) andStsMon P (25) are significantly long only starting from the
second cycle.
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0 7624 15248 22871 30495 38118 45742 53366 60989 68613 76236 83860 91484 99107 106731 114354 121978 129601 137225 144849 152472 160096 167719

Fig. 7: Gantt chart of the first cycle, generated by UPPAAL TIGA: task T(i) is green
when ready, blue – executing, red – blocked, cyan – suspended, resource R(j) is blue
when locked and owner uses CPU, green – locked but the owner ispreempted, cyan
– locked but owner is suspended.

In [Palm(2006)] the CPU utilisation for a 20-250ms window isestimated as
62.4%. Our estimate for the entire worst-case cycle is 63.65% which is slightly
larger, possibly due to the fact that it also includes the consumption during the 0-
20ms window. See [Mikǔcionis et al(2010)Mikǔcionis, Larsen, Rasmussen, Nielsen, Skou, Palm, Pedersen,and Houg
for additional insight on how the cycle limit affects verification resources and re-
sults.

Table 2 shows the worst-case response-times obtained from UPPAAL analysis
with 0%, 5% and 10% BCET deviation from WCET in comparison withresponse-
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times acquired by Terma. We note that in all cases the WCRT estimates pro-
vided by UPPAAL are smaller (hence less pessimistic) than those originallyob-
tained [Palm(2006)]. In particular, we note that the taskPrimaryF (task 21) is found
to be schedulable using model-checking with up to 10% deviation for best-case exe-
cution times, but most probably not schedulable from 14% (a trace leading to dead-
line violation is found), in contrast to the original negative result obtained by Terma.

Table 2: Specification, blocking and worst-case response-times of individual tasks.

Specification WCRT
ID Task Period WCET Deadline Terma 0% 5% 10%
1 RTEMS RTC 10.000 0.013 1.000 0.050 0.013 0.013 0.013
2 AswSyncSyncPulseIsr 250.000 0.070 1.000 0.120 0.083 0.083 0.083
3 Hk SamplerIsr 125.000 0.070 1.000 0.120 0.070 0.070 0.070
4 SwCycCycStartIsr 250.000 0.200 1.000 0.320 0.103 0.103 0.103
5 SwCycCycEndIsr 250.000 0.100 1.000 0.220 0.113 0.113 0.113
6 Rt1553Isr 15.625 0.070 1.000 0.290 0.173 0.173 0.173
7 Bc1553Isr 20.000 0.070 1.000 0.360 0.243 0.243 0.243
8 Spw Isr 39.000 0.070 2.000 0.430 0.313 0.313 0.313
9 Obdh Isr 250.000 0.070 2.000 0.500 0.383 0.383 0.383

10 RtSdbP 1 15.625 0.150 15.625 4.330 0.533 0.533 0.533
11 RtSdbP 2 125.000 0.400 15.625 4.870 0.933 0.933 0.933
12 RtSdbP 3 250.000 0.170 15.625 5.110 1.103 1.103 1.103
14 FdirEvents 250.000 5.000 230.220 7.180 5.553 5.553 5.553
15 NominalEvents 1 250.000 0.720 230.220 7.900 6.273 6.273 6.273
16 MainCycle 250.000 0.400 230.220 8.370 6.273 6.273 6.273
17 HkSamplerP 2 125.000 0.500 62.500 11.960 5.380 7.350 8.153
18 HkSamplerP 1 250.000 6.000 62.500 18.460 11.615 13.653 14.153
19 Acb P 250.000 6.000 50.000 24.680 6.473 6.473 6.473
20 IoCyc P 250.000 3.000 50.000 27.820 9.473 9.473 9.473
21 PrimaryF 250.000 34.050 59.600 65.47 54.115 56.382 58.586
22 RCSControlF 250.000 4.070 239.600 76.040 53.994 56.943 58.095
23 Obt P 1000.000 1.100 100.000 74.720 2.503 2.513 2.523
24 Hk P 250.000 2.750 250.000 6.800 4.953 4.963 4.973
25 StsMonP 250.000 3.300 125.000 85.050 17.863 27.935 28.086
26 TmGenP 250.000 4.860 250.000 77.650 9.813 9.823 9.833
27 SgmP 250.000 4.020 250.000 18.680 14.796 14.880 14.973
28 TcRouterP 250.000 0.500 250.000 19.310 11.896 11.906 14.442
29 Cmd P 250.000 14.000 250.000114.920 94.346 99.607 101.563
30 NominalEvents 2 250.000 1.780 230.220102.760 65.177 69.612 72.235
31 SecondaryF 1 250.000 20.960 189.600141.550 110.666 114.921 122.140
32 SecondaryF 2 250.000 39.690 230.220204.050 154.556 162.177 165.103
33 Bkgnd P 250.000 0.200 250.000154.090 15.046 139.712 147.160

On a Linux server with Intel Xeon E5420 2.5GHz processor UPPAAL takes
2min 40s to verify that the system is schedulable, 6min 30s tofind WCRTs with
0% BCET deviation. In case of 10% BCET deviation it took slightly over 6 days
to establish schedulability and slightly over 7 days of 6 parallel runs to find all
WCRTs. Table 3 shows the amount of verification resources UPPAAL requires to
verify schedulability with different task execution time windows and model time
limits. In this study we used compact data structure (CDS) tostore the clock val-
uations in contrast to difference bound matrices (DBM) in previous study, which
explains why the verification is slower, but the memory usageis limited and varies
very little across model time limits.
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In addition UPPAAL reported that the system is not schedulable when the task
execution time window is larger than 14%. We found that the cycle limit granularity
(used to define the progress measure) affects performance aswell as the outcome:
the larger cycles lead to error state being reachable because larger cycles result in
the coarser stop-watch over-approximation. For example, binary search method re-
vealed that with a 20% task execution window the error is reachable within the first
250ms period when the cycle is larger than 8017msand otherwise it is not. However
the error is reachable in the second 250ms period even if the cycle is as small as 2ms
(verification took 24 hours).

Table 3: Verification statistics for different task execution time windows and explo-
ration limits: the percentage denotes difference between WCET and BCET, limit is
in terms of 250ms cycles (∞ stands for no limit, i.e. full exploration), memory in
MB, time in seconds.

limit 0% 5% 10% 14%
states mem time states mem time states mem time, s states mem time

1 1300 51.2 1.47 485077 83.0 903.1 1481162 124.1 4962.83348246 186.9 23986.5
2 2522 53.7 2.45 806914 96.8 1619.9 2414679 139.7 7755.25253778 198.7 33299.2
4 4981 54.5 4.62 1499700 97.2 2881.8 4421630 138.3 13720.09231399 274.6 51176.6
8 9928 54.7 8.48 2828776 97.8 5325.1 9093562 156.5 31122.318240030 364.6 102932.4

16 19805 55.3 16.11 5366015 112.0 9952.017798572 176.0 60124.535432003 520.4 158816.7
∞ 196336 58.8 159.6452728344 553.9 97507.4181869652 1682.2 530604.9error may be reachable

4 Discussion

We have shown how UPPAAL can be applied for schedulability analysis of a sys-
tem with a single CPU, fixed priorities preemptive scheduler, mixture of periodic
tasks and tasks with dependencies, and mixed resource sharing protocols. Worst-
case response-times (WCRT), blocking times and CPU utilisation are estimated by
using model-checker according to detailed task models. Ourmodelling patterns use
stopwatches in a simple and intuitive way. A break-through in verification scalabil-
ity for large systems (more than 30 tasks) is achieved by employing the sweep-line
method.

The task templates are demonstrated to be generic through many instantiations
with arbitrary computation sequences and specialised for particular resource shar-
ing. The framework is modular and extensible to accommodatea different scheduler
and control flow can be expanded with additional instructions if some task algorithm
is even more complicated. In addition, UPPAAL allows easy visualisation of the
schedule in Gantt chart and the system behaviour can be examined in both symbolic
and concrete simulators.

The case study results include a self-contained non-ambiguous model which for-
malises many informal assumptions described in [Palm(2006)] in human language.
The verification results demonstrate that the timing estimates correlate with figures
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from the response-time analysis [Palm(2006)]. The worst-case response-time ofPri-
maryF is indeed very close to its deadline, but overall, all estimates by UPPAAL are
lower (more optimistic) and they all (WCRT21 in particular) are below deadlines,
whereas the classical response-time analysis found thatPrimaryF may not finish
before deadline and does not provide any more insight on how the deadline is vio-
lated or whether such behaviour is realizable.

By relaxing the lower bound of task execution time we showed that the system is
probably not schedulable if BCET deviates from WCET by 15% or more. We found
that it is better to start exploration with small task execution windows with large
progress cycles first and limit the model time (effectively limiting the verification
resources), then progress gradually with larger windows and then use smaller cy-
cles to refine over-approximation. The large task executionwindows (e.g. 20% with
small progress cycles, or simple case of 50% with large cycles) can take days just to
find the error and potentially much longer if there is no error.

We plan to conduct a similar study to allow sporadic tasks andapply statistical
model-checking methods to investigate the probability of deadline violation as a
cheaper means to detect errors.

So far we have not addressed margin analysis (as part of response-time analy-
sis), but we see no principle obstacle to use the binary search method to find upper
bounds for task execution times.

4.1 Related Work

Process algebraic approach has resulted in many methods forspecification and
schedulability analysis of real-time systems. For example[Ben-Abdallah et al(1998)Ben-Abdallah, Choi, Clarke, Kim,
provide an overview of this long tradition.

In [Waszniowski and Hanźalek(2008)] it is shown how a multitasking application
running under a real-time operating system compliant with an OSEK/VDX standard
can be modelled by timed automata. Use of this methodology isdemonstrated on
an automated gearbox case study and the worst-case response-times obtained from
model-checking is compared with those provided by classical schedulability analy-
sis showing that the model-checking approach provides lesspessimistic results due
to a more detailed model and exhaustive state-space exploration.

The Times tool [Amnell et al(2002)Amnell, Fersman, Mokrushin, Pettersson, and Yi]
can be used to analyse single processor systems, however it supports only highest
locker protocol (simplified priority ceiling protocol) [Fersman(2003)]. Approaches
like [Bøgholm et al(2008)Bøgholm, Kragh-Hansen, Olsen, Thomsen, and Larsen] and
[Brekling et al(2009)Brekling, Hansen, and Madsen] provides external transforma-
tion into UPPAAL [Behrmann et al(2004)Behrmann, David, and Larsen] timed-automata
for schedulability analysis.
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