Schedulability Analysis of Her schel/Planck
Software Using Uppaal
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Abstract This chapter shows howrPAAL is applied in schedulability analysis of
satellite attitude and orbit control software used in Hee#’lanck mission. Our

method transforms the schedulability analysis into rehitiyaanalysis performed

by UppAAL. The chapter briefly describes the schedulability requireisiand elab-

orates on the modeling framework designed to handle singleegsor hardware
with a fixed priority preemptive scheduler, detailed taskcsfications, two resource
sharing protocols and voluntary task suspension. Thetegisiglude qualitative an-

swers (whether the system is schedulable) as well as gat@rgit(response and
blocking time estimates) which are comparable with cladsesponse-time analy-
sis.

Key words. schedulability analysis, timed automata, stop-watchraata, model-
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1 Introduction

The goal of schedulability analysis is to check whetheraaks finish before their
deadline. Traditional approaches like [Burns(1994)] pevgeneric frameworks
which assume worst-case scenario where consecutive 1Issiomes are calculated
and compared with deadlines. Often, such conservativeasiosrare never realized
and thus negative results from such analysis may be toomissisi. The idea is
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to base the schedulability analysis on a system model wisisiply more details,
taking into account specifics of individual tasks. In parée this will allow a safe
but far less pessimistic schedulability analysis to bdesgtising real-time model
checking. Moreover, the model-based approach providdéemsgained visual rep-
resentation of the system with formal, non-ambiguous pregation, simulation and
other possibilities for verification and validation.

Our model-based approach is motivated by and carried outamge applica-
tions in a case study of Herschel-Planck satellite systesmpared with classical
response-time analysis our model-based approach is faunditormly provide
less pessimistic response-time estimates and allow tdud@schedulability of all
tasks, in contrast to negative results obtained from thesial approach.

1.1 The Herschel-Planck Mission

The Herschel-Planck mission consists of two satellitegseteel and Planck. The
satellites have different scientific objectives and thiessbnsor and actuator con-
figurations differ, but both satellites share the same caatjonal architecture. The
architecture consists of a single processor, a real-tinegadipng system (RTEMS),
a basic software layer (BSW) and an application software (ASW)

The goal of the study is to show that ASW tasks and BSW tasksdredulable
on a single processor with no deadline violations. The taskspreemptive fixed
priority scheduler and a mixture of priority ceiling andquity inheritance protocols
for resource sharing and extended deadlines (beyond pdriatidition, some tasks
need to interact with external hardware and effectivelpsus their execution for a
specified time. Due to suspension, this single-processbesyhas some similarity
to multi-processor systems since parts of activities asz@ed elsewhere and the
classical worst-case response-time analysis (applitalsiegle-processor systems)
is pushed to its limits. One of the results of [Palm(2006Yhat one task may miss
its deadline on Herschel (and thus the system is not schadlaut this violation
has never been observed in neither stress testing nor adeeity

Figure 1 shows the parameters which describe each peraskcperiod defines
how often the task is started, offset — how far into the cyoketask is started (re-
leased), deadline is measured from the instance when tatkried and worst-case
execution time within deadline.
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Fig. 1: Task time bounds.
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Some tasks access shared resources and those are projestedaphore lock-
ing to ensure exclusive usage. Sometimes tasks use resaeqeatedly (locking
and unlocking several times). When the resource semaphtoekisd, a task may
suspend its execution by calling hardware services andngdibr the hardware to
finish thus temporarily releasing the processor for othgkgaThe processor may
be released multiple times during one semaphore lock. fporese-time analysis,
the processor utilisation is computed by dividing the sumvofst-case execution
times by the duration of analysed time window.

Table 1 shows the description of the primary functions tasknf[Palm(2006)].
The task consists of six activities. Each activity is ddsedi by two numbers: CPU
time / BSW service time (BSW service time is included in CPiud), followed
by resource usage pattern if any. The resource usage islbsbry the following
parameters:

LNS — total number of times the CPU has been released whileefmirce was
locked (task suspension count).

LCS - total time the CPU has been released while the resolwasdogked (task
suspension duration).

LC — total time the resource has been locked.

MaxLC — the longest time the resource has been locked.

For example “Data processing” takes 20f84n total, from which it has locked
the resourcé cb_Rfor 160Qus, and from which CPU has been released (execution
suspended) for 12Q0s.

Table 1: The sequence of primary functions task from [Pad62].

Primary Functions
- Data processing 20577/2521
Icb_R(LNS: 2, LCS:1200, LC: 1600, MaxLC: 800)
- Guidance 3440/0
- Attitude determinatior8751/1777
Sgm_R(LNS: 5, LCS:121, LC: 1218, MaxLC: 236)
- PerformExtraChecks 42/0
- SCM controller 3479/2096
PmReg_R(LNS: 4, LCS:1650, LC: 3300, MaxLC: 3300
- Command RWL 2752/85

2 Model-Checking Schedulability M ethodology

The main idea is to translate schedulability analysis @wobinto a reachability
problem for timed automata and use the real-time modelkarddPPAAL to check
that none of the deadlines are violated, derive worst-céseking and response-
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times and processor utilization. We refer to the previousptér for LPPAAL con-
cepts.

Figure 2 shows the work-flow of response-time analysis (peréd by Terma
A/S) and schedulability analysis usingpBAAL: the task timing informations are
obtained from ASW and BSW documentation, worst-case ei@ttimes (WCET)
of BSW are obtained from BSW documentation [Terma A/S(Ililend ASW
timings are obtained from simulation measurements. Intexidihe UpPAAL model
uses information about the individual task flows, i.e. timeirig of resource locks,

CPU execution and suspension.

Simulation fSPV!r:iod(i) Properties
schedulable?
MEASUEMENtS L _La offse() Response _
& calculations o ) . WCRT(i)
= WCET() Time o
» Deadline(i) Analysis Blocking(i)
CPUtimes
~—
Uppaal Properties
Documentation Model schedulable?
WCRT(i)
BSW STSB > Offset(i) Checker o
- ) Blocking(i)
> WCET(i) _
> Deadline(i) CPUtimes

Fig. 2: Work-flow of schedulability analysis.

The UppaAL framework consists of the following process models: a fixedrp
ity preemptive CPU scheduler, a number of task models, angorcess for ensur-
ing global invariants. We provide different templates fask models: one for peri-
odic tasks and several for tasks with dependencies, all afhwdre parameterised
with explicit sequence of task actions and may be custontisagarticular resource
sharing protocol. We also investigate the scalability efdpproach by allowing dif-
ferent best-case execution times (BCET) as a percentageudisfrom WCET. In
practice it is possible to put realistic BCETS, but we chabseparametrisation for
the sake of systematic exploration. Our approach uses the sk descriptions
as [Palm(2006)].

The following outlines the main modelling ingredients:

e One template for the CPU scheduler.

e One template for the “idle” task to keep track of CPU usagesim

e One template for all BSW tasks, where resources are lockeedban priority
inheritance protocol.

e One template for th#lainCycle ASW task, which is released periodically, starts
other ASW tasks and locks resources based on the prioriipgg@rotocol.
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e One template for all other ASW tasks, which are released hglepnisations,
and locks resources based on priority ceiling protocol.

e Task specialisation is performed during process instaatidy providing indi-
vidual list of operations encoded intdlaw array.

e Each task (either ASW or BSW) uses the following clocks and #latiables:

— Task and its clocks are parameterised by an identifier

— Alocal clockx controls periodic releases of the task. The task then maves t
an error state ik is greater than its deadline.

— Alocal clocksubcontrols progress and execution of individual operations.

— Alocal integetic is an operation counter.

— The worst-case response-time for takls modelled by a stopwatdWCRTid]
which is reset when the task is started and is allowed to pssgonly when
the task is ready (global invaria®CRTid]’ == readyfid] ensures that). The
worst-case response-time is estimated as maximum vaM&&R Tid].

— Anerror location is reachable aretror variable is set tarue if there is a
possibility to finish after deadline.

Further we explain the most important model templates, evttie complete
model is available for download at http://www.cs.aau-dkarius/Terma/ .

2.1 Scheduler Model

Figure 3a shows the model of the scheduler. In the begintivggScheduler ini-
tialises the system (computes the current task priorityesonputing default prior-
ity based on d and starts the tasks with zero offset) and in locaRanni ng waits
for tasks to become ready or current task to release the C&unee. When some
task becomes ready, it adds itself to theskqueue and signals on thenqueue
channel, thus moving the Scheduler to locat®rhedul e. From the location
Schedul e, the Scheduler compares the priority of a current tgski o[ ct ask]
with the highest priority in the quewspr i o[ t askqueue[ 0] ] and either returns
to Runni ng (nothing to reschedule) or preempts the current tasisk, puts it
intot askqueue and schedules the highest priority task froaskqueue.

A task releases the CPU by a signal ease[ CPU.R], in which case the
Scheduler pulls the highest priority task fraraskqueue and optionally notifies
it with broadcast synchronisation on chansehedul e.

Thet askqueue always contains at least one ready tdskeTask. Figure 3b

shows howidleTask reacts to Scheduler events. It also computes the CPU usage

time using stopwatclusedTi me and the total CPU load is then calculated as
dTi
glilggal‘l'lirrnni'
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initialize!
main()
schedule[ctask]! )
runs[ctask]=1 R .
unning
id: tpskid_t

release[CPU R]? enqgueuelid]?
runs[ctask]=0, addftaskqueue, id)
ctask=poll(taskqueue)

taskqueue[0]>0 &&
cprio[ctask]< schedule[0]?

cprio[taskqueue[0]] KC\ cprio[ctask]>=
preempt[ctask]! & cprio[taskqueue[0]] . preempt[0]? @
Preempt add(taskqueue,ctask), Schedule
runs[ctask]=0, CPUUsed CPUldle
ctask=poll(taskqueue) idleTime'==0  usedTime'==0
(a) Template for CPU scheduler. (b) Idle task model.

Fig. 3: Models for CPU scheduler and the simplest task.

2.2 Tasks Templates

Task template is a generalization of a task process. We geaviree task tem-
plates which share the same timed automata structure ezoap minor differ-
ences: BSW (started periodically, uses priority inheagn ASW (started by other
task, uses priority ceiling) and MainCycle (started peigatly, starts other tasks
and uses priority ceiling). The templates are instantiatéd a concrete task de-
scription: period, offset, deadline and resource usagessexg we call task flow.

Figure 4 shows a template used lgainCycle which is started periodically. At
first MainCycle waits for O f set time to elapse and moves to locatibdl e
by setting the clock to Per i od. Then the process is forced to leave thal e
location immediately, to signal other ASW tasks, add itselhe ready task queue
and arrive to locatioMai t For CPU. WhenMainCycle receives notification from
the scheduler it moves to locati@ot CPU and starts processing commands from
theflow array.

Declaration of task flow array type is shown in Fig. S&.ow.t is an array of
operationper at i on_t , and operations are tuples of operation tgpé ype_t ,
resource identifier esi d_t and a timing argumenti ne_t which is an inte-
ger.Figure 5b shows the beginning of the flow for the primanyction task.

There are four types of operations:

1. LOCK is executed from locatiohr yLock where the process attempts to ac-
quire the resource. It blocks if the resource is not avadlanld retries by adding
itself to the processor queue again when the resource ssedle It continues to
locationNext by locking the resource if the resource is available.

2. UNLOCK simply releases the resource and moves on to tmcétext . The
implementation of locking and unlocking for both protoc@sstraightforward
and fits into 28 lines of code.
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x==Period (A _ x==Offset
StartASW! &= StartASW! @
Idle starting
; runs[id] &&
x<=Period ]ob[u[j]>]:WCETf x<=Offset
WCET*BCD/100 &&
x<=Deadline enquepiefid]!
) x=0, jqb[id]=0,
release[CPU_R]! WCRTIid]=0 dyfidl=1
ic=0, job[id]=0, (id=0, ready{id
WCRT(id]=0, ready[id]=0
x>Deadline
( error=1
Finishing x>Deadline
x>Deadline job[id]<=WCET error=1 )WaitForCPU WaitForCPU2
error=1
rEu,Gé[‘:d:]f%%V[m] cmd && release[flow[ic]Jres]?
x<=Deadline schedulelid]? scheddile[id]? blocked[id]=0
UNLOCK==flow[ic].cmd GotCPU lavail(flow[ic].res)
(e x>Deadline release[flow[ic].res]! fc\ LOCK== fc\ release[CPU_R]!
error=1 unlockCeil(flowfic].res, id), flow[ic].cmd i Lock\J blocked[id]=1 \S
Next ic++, sub=0 Y Blocked
sub'==runs][id] id] && SUSPEND== avail(flow[ic].res)
&& sub<=0 END!=flow[ic].cmd && flow[ic].cind lockCeil(flowfic].res, id),
x<=Deadline COMHAUTE== release[¢PU_R]!  ic++, syb=0
fl id]=
runs[id] && O;VE'S emd zﬂfﬁ%d] frue:
sub>=flow[ic].delay— Sub= Suspended
flow[ic].delay*BCD/100 sub<=
ic++, sub=0 ( flow[ic].delay
Computing sub==flpw[ic].delay
sub’==runs[id] && enqueug[id]!
b<=flow[ic].del idJ=
subsslowliel detay fclisflls(i]bff(l)se' x>Deadline
L ~ J eror=0_

Fig. 4: MainCycle task: periodically starts ASW functions.

optypet = END| COMPUTE|LOCK | % T fes  delay
UNLOCK | SUSPEND -

0
. 1/COMPUTHCPUR| 400
residt ::= Ich.R | SgmR | PmReqgR | >[SUSPENDICPUR| 1200
OtherR 3 S
4

o UNLOCK [lcbR | 1200
timet ::= int[0, 10000000] COMPUTECPUR|20177
operationt ::= optypet residt time.t
flow_t ::= operationt*

18/END

(b) Flow of primary functions task.

(a) Declaration of task flow type.

Fig. 5: Structure and an instance of task flow.

3. SUSPEND releases the processor for the specified amotimegfadds itself to
the queue and moves to locatidlext . The task progress clocjob|id] is not
increasing but the response measurement AlEIRTid] is.

4. COMPUTE makes the task stay in locatiGonput i ng for the specified dura-
tion of CPU time, i.e. the clockubis stopped whenever the task is preempted
(rundid] is set to 0). Once the required amount of CPU time is consuthed,
process moves on to locatidiext . For scalability study we relax the guard by
BCD percent of time, allowing the task to finish slightly earliean WCET.

From locatiorNext , the process is forced by thengjid] invariant to continue with
the next operation: if it is not the END and it is running, thiemoves back to
Got CPUto process next operation, and it move&tmi shi ng if it's the END. In
theFi ni shi ng location the process consumed CPU for the remaining timieado t
the complete WCET is exhausted and then it moves batkite. From locations
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Next andFi ni shi ng the outgoing edges are constrained to check whether the
deadline has been reached since the last task release gas set to 0), and
edges force the process irfor or location ifx > Deadline

The flow for MainCycle is trivial: it computes for its WCET while keeping a
lock onSgm_R. A more sophisticated example of flow is shown in Listing 1 vehe
the timing numbers are taken from description in Table 1tdsk attempts to lock
the resourcé cb_R, when the resource is locked it actively uses the CPU fou400
(because according to the description the resource isdidckel 60Qus and CPU is
not used for 1200s due to suspension), then CPU is suspended for g20b_R
is released and CPU is used for the remaining task execution.

Listing 1: The data processing part of operation flowRoimaryF task.

const ASWFlow.t PEf= { // Primary Functions,————— Data processing:
{ LOCK, IchR, 0}, /I 0) acquire lock on IckR
{ COMPUTE, CPUR, 1600-1200}, // 1) execute with IcHR being locked
{ SUSPEND, CPLR, 1200}, /I 2) suspend/release CPU, while &b is locked
{ UNLOCK, IchR, 0}, /I 3) release lock on IciR
{ COMPUTE, CPUR, 20577-(1600-1200) }, // 4) execute without IciR

}

The template for BSW tasks is almost the samé/anCycle, except that 1)
BSW tasks do not have to start other ASW tasks and thus frdhe they go di-
rectly to Wai t For CPU with enqueueing edge, 2) instead of the ceiling protocol
(lockCeilandunlockCei) it uses priority inheritancddcklnhandunlockinh and 3)
it boosts the owners priority by callingpostPridflowfic].resid) on the edge from
tryLock toBl ocked. BSW tasks have their own local clogkwhile MainCycle
shares it with other ASW tasks.

We use only LCS (CPU suspension time while resource is Igcked LC (total
locking time) from Table 1, where we assume that-LCCS is the CPU busy time
while the resource is locked.

Listing 1 shows an example of detailed control flow strucforéPrimaryF task,
where the numbers mean the time duration and comments ealeltiestep to an item
in Table 1.

2.3 System Model Instantiation

Listing 2 shows how tasks are instantiated with task idemtififfset, period, flow,
deadline and shared ASW clock. In total there are 32 taskstenid=13 is reserved
for priority ceiling.

Listing 2: Task instantiation.

1l taskid , Offset , Period, flow, WCET, Deadline
RTEMSRTC = BSW(1, 0, 10000, WCET, 13, 1000);
AswSyncSyncPulselsr=BSW(2, 0,250000, WCET 70, 1000);
Hk_Samplerlsr = BSW(3,62500,125000, WCET70, 1000);

mainCycle = MainCycle(16,20000,250000, 400, 230220, ASWclock);
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primaryF = ASW(21,StartASW,Done, BE34050, 59600, ASWclock);

Bkgnd P = BSW(33, 0,250000, WCET, 200, 250000);

Listing 3 shows system declaration with a . The variablecl e counts cy-
cle number as an heuristic progress measure which allomsabl to use the
sweep-line method to reduce the verification memory consiompThe cycle
is incremented after a period of 250ms and is being reset aftme specified
CYCLELI M T in theGlobal process. The proce§dobal also takes care of global
invariants orjob[i] andWCRT]i] stopwatches of each tagk

Listing 3: System declaration usingPBAAL priorities.

system Scheduler, RTEMSRTC, AswSyncSyncPulselsr, HiSamplerlsr, SwCyycStartlsr,
SwCyc CycEndlsr, Rt1553sr, Bc1553Isr, Spwlsr, Obdhlsr, RtSdhP.1, RtSdhP-2, RtSdhP_3,
FdirEvents, NominalEvent$, mainCycle, HkSampleP-2, HkSamplerP_1, Ach.P, IoCycP,
primaryF, rCSControlF, ObP, Hk P, StsMonP, TmGenP, SgmP, TcRouterP, CmdP,
NominalEvents2, secondEL, secondE2, BkgndP, IdleTask, Global;

progress { cycle; }

5
globalTime==cycle*CYCLE Done* globalTime==cycle*CYCLE
&& cycle==CYCLELIMIT && cycle<CYCLELIMIT
cycle=1, globalTime=0, cycle++
usedTime=0, idleTime=0,

WCRT[0]=0 \Q/
TIME<=LIMIT &&
globalTime<=cycle*CYCLE &&
forall(i: taskid_t) job[i]'==runs[i] &&
forall(i: taskid_t) WCRTI[i]'==ready]i]

Fig. 6: Global process enforce invariants on stopwatches and cyclic essgr

2.4 Verification Queries

The following is a list of queries used to check schedulgbgiroperties:

e Check if the system is schedulable (the error state is nohedde):
E<> error

e Checkifanytask can be blocked at &lk> exi sts(i:taskidt) blocked[i]

e Find the total worst CPU usageup: usedTi ne, idleTine

e Findthe worst-case response-timegp: WCRT[ 0], WCRT[ 1], ... WCRT[ 33]

e Find worst-case blocking times, wheBg] is a stopwatch growing when tasls
blocked:sup: B[ 0], B[1], B[2], ... B[33]

A sup-query explores the entire reachable state space and cesniet maximum
(supremum) value of an argument expression. This is paatiguuseful for com-
puting several bounds at once.
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3 Resaults

Our results provide three important pieces of informatidsualisation of a sched-
ule in a Gantt chart, worst-case response-times estimate€RU utilisation and
verification benchmarks.

A Gantt chart can be used to visualise a trace of the systerm pifoviding a rich
picture for inspection. For example, the generated Gaatt @ Figure 7 shows that
Cmd_P is blocked more than 5 times during the first cycle, while king times for
PrimaryF (21) andStsMon_P (25) are significantly long only starting from the
second cycle.

0 7624 15248 22871 30495 ,38118 45742 ,53366 ,60989 ,68613 ,76236 ,83860 ,91484 99107 ,106731 ,114354 ,121978 ,129601 ,137225 ,144849 ,152472 ,160096 ,16}
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T(2g) | J
T(29) _III-:—'-::I:I-
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@1 55 T X INIO K (XX
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R | 4 P ¢ d N g pe ¢ J
R(2) i g b M i ¥ :
R(3) I I
R(4)
R(5) K
R(6)

Fig. 7: Gantt chart of the first cycle, generated bgPdAL TIGA: task T(i) is green
when ready, blue — executing, red — blocked, cyan — susperekslirce R(j) is blue
when locked and owner uses CPU, green — locked but the owpezésnpted, cyan
—locked but owner is suspended.

In [Palm(2006)] the CPU utilisation for a 20-250ms windoweistimated as
62.4%. Our estimate for the entire worst-case cycle i6% which is slightly
larger, possibly due to the fact that it also includes thesoamption during the 0-
20ms window. See [Mikgionis et al(2010)Mikdgionis, Larsen, Rasmussen, Nielsen, Skou, Palm, Pedanseic
for additional insight on how the cycle limit affects verditon resources and re-
sults.
Table 2 shows the worst-case response-times obtained freraAL analysis
with 0%, 5% and 10% BCET deviation from WCET in comparison wéhkponse-
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times acquired by Terma. We note that in all cases the WCRMmatds pro-
vided by UrpAAL are smaller (hence less pessimistic) than those origiruddly
tained [Palm(2006)]. In particular, we note that the tBsiknaryF (task 21) is found
to be schedulable using model-checking with up to 10% dievidbr best-case exe-
cution times, but most probably not schedulable from 14%g(@etleading to dead-
line violation is found), in contrast to the original negatresult obtained by Terma.

Table 2: Specification, blocking and worst-case respoinsestof individual tasks.

Specification WCRT

ID|Task Period WCET Deadlir&& Terma 0% 5%  10%

1|RTEMS.RTC 10.000 0.013 1.0 0.050 0.013 0.013 0.013
2|AswSyncSyncPulselgr 250.000 0.070 1.00p 0.120 0.083 0.083 0.083
3|Hk_Samplerlsr 125.000 0.070 1.00p 0.120 0.070 0.070 0.070
4|SwCyc CycStartlsr 250.000 0.200 1.00p 0.320 0.103 0.103 0.103
5|SwCyc.CycEndlsr 250.000 0.100 1.00p 0.220 0.113 0.113 0.113
6|Rt1553Isr 15.625 0.070 1.0 0.290 0.173 0.173 0.173
7|Bc1553Isr 20.000 0.070 1.0§§ 0.360 0.243 0.243 0.243
8|Spw.lsr 39.000 0.070 2.0 0.430 0.313 0.313 0.313
9|Obdh.Isr 250.000 0.070 2.0dp 0.500 0.383 0.383 0.383
10|RtSdhP-1 15.625 0.150 15.625 4.330 0.533 0.533 0.533
11|RtSdhP-2 125.000 0.400 15.635 4.870 0.933 0.933 0.933
12|RtSdhP-3 250.000 0.170 15.62p 5.110 1.103 1.103 1.103
14| FdirEvents 250.000 5.000 230.22p 7.180 5.553 5.553 5.5%3
15/NominalEvents_1 250.000 0.720 230.22p 7.900 6.273 6.273 6.273
16|MainCycle 250.000 0.400 230.22p 8.370 6.273 6.273 6.273
17|HkSamplerP-2 125.000 0.500 62.50D 11.960 5.380 7.350 8.1%3
18|HkSamplerP_1 250.000 6.000 62.50p 18.460 11.615 13.653 14.1p3
19|Acb_P 250.000 6.000 50.00p 24.680 6.473 6.473 6.473
20|loCyc.P 250.000 3.000 50.00p 27.820 9.473 9.473 9.4713
21|PrimaryF 250.000 34.050 59.60p 6547 54.115 56.382 58.586

22|RCSControlF 250.000 4.070 239.60p 76.040 53.994 56.943 58.0p5
23|0btP 1000.000 1.100 100.00074.720 2.503 2.513 2.523
24{Hk_P 250.000 2.750 250.00p 6.800 4.953 4.963 4.973
25|StsMonP 250.000 3.300 125.00p 85.050 17.863 27.935 28.0B6
26| TmGenP 250.000 4.860 250.00p 77.650 9.813 9.823 9.833
27/SgmP 250.000 4.020 250.00p 18.680 14.796 14.880 14.9[73
28| TcRouterP 250.000 0.500 250.00p 19.310 11.896 11.906 14.442
29|Cmd.P 250.000 14.000 250.00(114.920 94.346 99.607 101.563
30|Nominal Events_2 250.000 1.780 230.2%02.760 65.177 69.612 72.235
31|SecondaryF_1 250.000 20.960 189.6()A41.550 110.666 114.921 122.140
32| SecondaryF_2 250.000 39.690 230.22(204.050 154.556 162.177 165.103
33|Bkgnd.P 250.000 0.200 250.00[154.090 15.046 139.712 147.160

On a Linux server with Intel Xeon E5420 2.5GHz process@PlAL takes
2min 40s to verify that the system is schedulable, 6min 30ntb WCRTSs with
0% BCET deviation. In case of 10% BCET deviation it took sliglover 6 days
to establish schedulability and slightly over 7 days of 6aflat runs to find all
WCRTs. Table 3 shows the amount of verification resourcesA4L requires to
verify schedulability with different task execution timéndows and model time
limits. In this study we used compact data structure (CDStooe the clock val-
uations in contrast to difference bound matrices (DBM) iaviwus study, which
explains why the verification is slower, but the memory usadinited and varies
very little across model time limits.
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In addition UPPAAL reported that the system is not schedulable when the task
execution time window is larger than 14%. We found that thateclimit granularity
(used to define the progress measure) affects performanegellaas the outcome:
the larger cycles lead to error state being reachable bedarger cycles result in
the coarser stop-watch over-approximation. For examjaer search method re-
vealed that with a 20% task execution window the error ishieble within the first
250ms period when the cycle is larger than 80%@nd otherwise it is not. However
the error is reachable in the second 250ms period even if/tle is as small as 2ms
(verification took 24 hours).

Table 3: Verification statistics for different task exeouttime windows and explo-
ration limits: the percentage denotes difference betweefEWahd BCET, limit is
in terms of 250ms cyclesq stands for no limit, i.e. full exploration), memory in
MB, time in seconds.

limit 0% 5% 10% 14%
states mem time states mem time states mem time|s states mem tim
1] 1300 51.2 1.4y 485077 83.0 903[1 1481162 124.1 4962|83348246 186.9 23986
2| 2522 53.7 2.45 806914 96.8 1619)9 2414679 139.7 7755|25253778 198.7 33299
4| 4981 545 4.6P 1499700 97.2 2881)|8 4421630 138.3 1372009231399 274.6 51176
8| 9928 54.7 8.48 2828776 97.8 5325[1 9093562 156.5 3112238240030 364.6 102932

upoNnOo®

[

6| 19805 55.3 16.115366015 112.0 9952|017798572 176.0 6012435432003 520.4 158814
(196336 58.8 159.642728344 553.9 97507.481869652 1682.2 530604.9error may be reachable

4 Discussion

We have shown how BPAAL can be applied for schedulability analysis of a sys-
tem with a single CPU, fixed priorities preemptive scheduigixture of periodic
tasks and tasks with dependencies, and mixed resourceghmntocols. Worst-
case response-times (WCRT), blocking times and CPU utdisatre estimated by
using model-checker according to detailed task models n@wgtelling patterns use
stopwatches in a simple and intuitive way. A break-throughdrification scalabil-
ity for large systems (more than 30 tasks) is achieved by eyim the sweep-line
method.

The task templates are demonstrated to be generic through imstantiations
with arbitrary computation sequences and specialisedddiqular resource shar-
ing. The framework is modular and extensible to accommaaldi#erent scheduler
and control flow can be expanded with additional instructibsome task algorithm
is even more complicated. In addition,PBAAL allows easy visualisation of the
schedule in Gantt chart and the system behaviour can be eadrim both symbolic
and concrete simulators.

The case study results include a self-contained non-arabgmodel which for-
malises many informal assumptions described in [Palm(B00&uman language.
The verification results demonstrate that the timing esésiaorrelate with figures
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from the response-time analysis [Palm(2006)]. The waasecesponse-time Bfi-
maryF is indeed very close to its deadline, but overall, all esteady LPPAAL are
lower (more optimistic) and they alWCRT,; in particular) are below deadlines,
whereas the classical response-time analysis foundPthiataryF may not finish
before deadline and does not provide any more insight on hevdé¢adline is vio-
lated or whether such behaviour is realizable.

By relaxing the lower bound of task execution time we shovied the system is
probably not schedulable if BCET deviates from WCET by 15% orenWe found
that it is better to start exploration with small task exé@mutwindows with large
progress cycles first and limit the model time (effectivaiyiting the verification
resources), then progress gradually with larger windowssthen use smaller cy-
cles to refine over-approximation. The large task execwtimalows (e.g. 20% with
small progress cycles, or simple case of 50% with large sycian take days just to
find the error and potentially much longer if there is no error

We plan to conduct a similar study to allow sporadic tasks apply statistical
model-checking methods to investigate the probability @dline violation as a
cheaper means to detect errors.

So far we have not addressed margin analysis (as part ofnesgione analy-
sis), but we see no principle obstacle to use the binary seaethod to find upper
bounds for task execution times.

4.1 Related Work

Process algebraic approach has resulted in many methodspéaification and
schedulability analysis of real-time systems. For exarfipe-Abdallah et al(1998)Ben-Abdallah, Choi, Clarke,
provide an overview of this long tradition.

In [Waszniowski and Harédek(2008)] it is shown how a multitasking application
running under a real-time operating system compliant witd&EK/VDX standard
can be modelled by timed automata. Use of this methodologisonstrated on
an automated gearbox case study and the worst-case regpoasebtained from
model-checking is compared with those provided by classit@edulability analy-
sis showing that the model-checking approach providegdessimistic results due
to a more detailed model and exhaustive state-space efiptara

The Times tool [Amnell et al(2002)Amnell, Fersman, MokrmshPettersson, and Yi]
can be used to analyse single processor systems, howewppibrss only highest
locker protocol (simplified priority ceiling protocol) [Feman(2003)]. Approaches
like [Baggholm et al(2008)Bggholm, Kragh-Hansen, Olsergrmiken, and Larsen] and
[Brekling et al(2009)Brekling, Hansen, and Madsen] pregigxternal transforma-
tion into UPPAAL [Behrmann et al(2004)Behrmann, David, and Larsen] timgidraata
for schedulability analysis.
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