
Continuous-time Models for System Design and
Analysis

Rajeev Alur1, Mirco Giacobbe2, Thomas A. Henzinger2, Kim G. Larsen3, and
Marius Mikučionis3

1 Department of Computer and Information Science, University of Pennsylvania
2 Institute of Science and Technology Austria

3 Department of Computer Science, Aalborg University

Abstract. In this paper, we illustrate the ingredients of the state-of-the-
art in model-based approach for formal design and verification of cyber-
physical systems. To capture the interaction between a discrete controller
and its continuously evolving environment, we use the formal models of
timed and hybrid automata. We explain the steps in modeling and ver-
ification in the tools Uppaal and SpaceEx using a case study based
on a dual chamber implantable pacemaker monitoring human heart. We
show how to design a model as a composition of components, how to
construct models at varying levels of details, how to establish that one
model is an abstraction of another, how to specify correctness require-
ments using temporal logic, and how to verify that a model satisfies a
logical requirement.

1 Introduction

A cyber-physical system consists of computing devices communicating with one
another and interacting with the physical world via sensors and actuators. In-
creasingly, such systems are everywhere, from smart buildings to medical devices
to autonomous cars. Model-based design offers a promising approach for assist-
ing developers to build cyber-physical systems in a systematic manner [27, 19,
2]. In this methodology, a designer first constructs a model, with mathematically
precise semantics, of the system under design, and performs extensive analysis
with respect to correctness requirements before generating the implementation
from the model.

Models of cyber-physical systems need to capture both the controller —
the system under design, and the plant — the environment with continuously
evolving physical activities in which the system operates. This typically means
a combination of block diagrams, state machines, and differential equations.
Furthermore, we need to define models formally , that is, in a mathematically
precise manner. The formal semantics allows us to answer questions such as,
“what are the possible behaviors of a component” and “what does it mean to
compose two components” rigorously, and forms the basis for analysis tools. In
this article we do not attempt a survey of the rich literature on formal models



and analysis tools for cyber-physical systems, but aim to give an introduction
to the subject using a case study (see [14] for some recent surveys).

Medical devices offer an ideal test-bed for exploring the applications of for-
mal methods in system design due to their safety-critical nature, which demands
higher levels of reliability and rapidly growing complexity due to increased au-
tonomous operation [28]. We use a dual chamber implantable pacemaker to illus-
trate the process of model construction and verification [31, 23, 29, 11]. The first
step in modeling is to choose a modeling formalism depending on what aspects
of the system a designer wants to focus on. The control algorithm of the pace-
maker is best modeled as a composition of timed automata [5], while the relevant
features of the heart can be described as a network of hybrid automata [4]. We
introduce these two formal models using the modeling tools Uppaal [26, 9] and
SpaceEx [18], respectively.

To check that the design works correctly as intended, the designer first needs
to express the requirements capturing correctness in a mathematically precise
manner. We explain two common ways of formalizing requirements using the
pacemaker case study. The automata-based approach corresponds to designing
a monitor that observes the input/output behavior of the system and enters
an error state if an undesirable pattern is detected [30]. The temporal-logic-
based approach corresponds to writing down a formula in a specialized formal
logic—TCTL (Timed Computation Tree Logic) in our case [3], which captures
the desired correctness requirement. A model checker is then tasked with the
job of automatically checking that the system model satisfies the requirement,
and produce feedback in the form of a counterexample if this is not the case [13].
Model checkers for continuous-time systems need to symbolically explore the
infinitely many reachable states of the model. While symbolic algorithms have
been developed for both timed and hybrid automata, the existing technology is
more scalable for timed automata [8]. Hence, we construct a timed-automaton-
based model of the heart by suppressing many details of the hybrid model, and
show how the model checker Uppaal can then be used to verify requirements
of the pacemaker.

Since we created a simplified heart model for the purpose of verifying re-
quirements of the pacemaker, we are faced with a new analysis problem, namely,
establishing a rigorous relationship between the two versions of the heart mod-
els. Showing that one model is a refinement or abstraction of another model is
another key step in model-based design, and is essential if we want to infer prop-
erties of the more complex model based on the analysis of the simpler one [12,
7].

Related work. In this paper, we use a dual chamber implantable pacemaker to
illustrate the modeling of control software and the physical world it interacts
with. Analyzing the behavior of the heart using formal methods was first pro-
posed in [31], and our modeling of a heart cell is based on the HH model with
linear differential equations from that paper. The modeling and model checking
of the control algorithm within a pacemaker first appears in [23], and we use
the pacemaker model as well as abstracted heart model from that paper for our



case study. Note that there has been considerable research on formal modeling
and verification of the pacemaker. For instance, [11] develops a more precise
Simulink model of the heart cell from [31] with non-linear differential equa-
tions, and [29] describes a translator from Uppaal to Simulink/StateFlow
for this purpose.

Organization of the paper. We begin with an overview of the heart and pace-
maker models in Sec. 2. Then, in Sec. 3, we use SpaceEx to construct an
abstraction of the heart, and, in Sec. 4, we use Uppaal to verify the whole
heart-pacemaker system. We conclude with future challenges in Sec. 5.

2 The Pacemaker Case Study

The human heart is an excellent example of a naturally occurring timed sys-
tem. It spontaneously generates electrical impulses that organize the sequence
of muscle contractions during each heart beat. The underlying timing pattern
of these impulses is key to the proper functioning of the heart. The implantable
cardiac pacemaker is a rhythm management device that monitors these patterns
and corrects them via external means when needed.

Controlled by the nervous system, a specialized tissue, called the sinoatrial
node, at the top of the right atrium periodically generates electrical pulses. These
pulses cause both atria to contract, forcing blood into the ventricles. The electri-
cal conduction gets delayed at the atrioventricular node, allowing the ventricles
to fill fully, but then spreads rapidly across the ventricular muscles, resulting in
their coordinated contraction, which pumps the blood out of the heart.

A common heart disease, called bradycardia, is due to failures in either im-
pulse generation or impulse propagation and results in slow heart rate, leading
to insufficient pumping of blood. Bradycardia can be treated by an implantable
pacemaker that monitors the heart rate and delivers timely external electrical
pulses to maintain an appropriate heart rate as well as atrio-ventricular coordi-
nation. Such a pacemaker usually has two leads fixed on the wall of the right
atrium and the right ventricle. Activation of local tissue is sensed by these leads,
and these sensing events act as inputs to the pacemaker. If these sensed events
do not occur in a timely manner, then the pacemaker responds by producing
pacing events that trigger electrical stimuli to the heart.

Figure 1 shows the pacemaker controller connected to a heart by two leads
(black lines) attached to the walls of the right atrium and the right ventricle
(blue area) from the inside. The sinoatrial pulses are propagated through the
neural cells (blue lines), which can both be measured and stimulated by the
pacemaker.

A modern pacemaker responds to a variety of heart conditions and can op-
erate in different modes. We focus on two modes DDD and VDI and switching
between them. In the mode DDD, the pacemaker is pacing both the atrium
and the ventricle, both chambers are being sensed, and the pacemaker software
responds to sensing by both activating and inhibiting further pacing, while in



Node

Right Atrium

Right Ventricle

Sinoatrial (SA)

Pacemaker

Fig. 1: A heart connected to a pacemaker.

the mode VDI, the pacemaker paces only the ventricle, senses both chambers,
and sensing causes inhibition of pacing.

2.1 Hybrid automata: Modeling the Heart

To analyze the functionality of the pacemaker at design time, we need a model
that captures how a human heart generates the sensory events. We can view the
heart tissue as a network of cardiac cells, where the electric wave propagates
along neighbouring cells assuring coordinated contraction. At the cellular level,
the electrical signal is a change in the potential across the cell membrane, and is
caused by the flow of ions, such as sodium and potassium, between the inside and
outside of the cell. Mathematical modeling of the ionic processes corresponding
to cell excitation has been studied extensively in computational systems biology.
Typically, such a model is described using nonlinear differential equations, and
consists of multiple continuous state variables corresponding to quantities such
as voltage and ion concentrations and a large number of parameters.

A first step in modeling is to decide what level of detail is appropriate for
the analysis task. For the purpose of this case study, we use the model proposed
by [31], which is derived from the well-accepted Hodgkin-Huxley (HH) model
of cell excitation. It is based on the observation that change in voltage with
time that describes the cell excitation upon stimulation can be clearly separated
in distinct phases, namely, upstroke, repolarization and resting, such that in
each phase the dynamics can be captured by linear differential equations. This
behavior can then be described using hybrid automata.

Hybrid automata offer a formal model for systems that exhibit both discrete
and continuous behavior, such as the combination of heart cells (continuous
behavior) and a pacemaker (discrete behavior). Continuous state change can
be described by guarded differential equations, while discrete state change can
be specified by guarded difference equations. The guard (or “invariant”) of a
differential equation is a state predicate that specifies the condition under which
the differential equation is active; the guard of a difference equation is a state



predicate that specifies the condition under which the difference equation is
enabled. Formally, a hybrid automaton is a graph whose vertices (or “modes”)
are annotated with sets of guarded differential equations, and whose edges (or
“mode transitions”) are annotated with sets of guarded difference equations [20].
A behavior of a hybrid automaton is a sequence of trajectory segments, where
each trajectory segment satisfies one of the mode equations and its invariant for
the duration of the segment, the last state of a segment satisfies one of the guards
of a transition equation, and together with the first state of the subsequent
segment, it satisfies the transition equation. Since from any initial state, there
may be several mode equations and transition equations to choose from, a hybrid
automaton can have many different behaviors (“nondeterminism”). Two or more
hybrid automata can be composed by using, in addition, synchronization labels
on the transitions.

Figure 2 shows the hybrid automaton describing the behavior of a heart
cell. It has two variables vx and vy for voltages over cell membrane, four modes
resting, stimulus, upstroke, and repolarization, and five synchronization
labels in0, in1, out0, out1, and get. The difference vx − vy models the trans-
membrane voltage potential of the cell, the labels in1 and in0 model rising
and falling edges of an input stimulus, and out1 and out0 of an output stim-
ulus, respectively. The label get indicates a spike peak of the cell voltage. The
parameters ax, ay, ist, by, cx, cy, dx, dy, VR, VT , and VO are constants and
are defined according to the specific cell instance. Initially, the cell is in resting

mode and vx and vy have any values that satisfy the invariant of resting, which
is 0 ≤ vx − vy ≤ VR. Afterwards, the values of vx and vy continuously evolve
according to the differential equation of resting which is given by v̇x = axvx
and v̇y = ayvy. The parameters ax and ay are such that ax < ay < 0 therefore
the voltage drops when in resting, and the continuous evolution progresses as
long as the variables satisfy the invariant 0 ≤ vx − vy ≤ VR. At any time, the

v̇x = axvx
v̇y = ayvy

0 ≤ vx − vy ≤ VT

v̇x = ist
v̇y = byvy

0 ≤ vx − vy ≤ VT

v̇x = cxvx
v̇y = cyvy

VT ≤ vx − vy ≤ VO

v̇x = dxvx
v̇y = dyvy

VR ≤ vx − vy ≤ VO

in1

in0

out1 vx − vy ≥ VTout0 vx − vy ≤ VR

get

vx − vy ≥ VO

resting stimulus

upstrokerepolarization

in0 in1

in1, in0in1, in0

Fig. 2: Hybrid automaton for the Hodgkin-Huxley model of a heart cell.



automaton can either take a transition labelled by in0 and stay in resting or a
transition labelled by in1 and switch to stimulus. In stimulus, the dynamics is
governed by the flow v̇x = ist and v̇y = byvy for the parameters by < 0 < ist and
satisfies the invariant 0 ≤ vx − vy ≤ VT , thus making the voltage rise up to VT .
As long as the values satisfy the invariant 0 ≤ vx − vy ≤ VT the automaton can
either execute the transition labelled with in1 and stay in stimulus or take in0

and switch back to resting, while as soon as the variable values satisfy the guard
vx − vy ≥ VT it can take out1 and switch to upstroke. The trajectory of the
potential continues to progress in this manner, namely it evolves continuously
in modes and discontinuously on transitions. In the remaining modes upstroke
and repolarization the parameters are such that cx > cy > 0 > dy > dx. As a
result, we show in Fig. 3 a sample trajectory demonstrating how invariants and
guards relate to the automaton modes.

R
V

TVresting

upstroke

OV

resting

repolarization

stimulus

Fig. 3: Heart cell electrical potentials and modes (locations) over time.

The model of the whole heart consists of a composition of cells, which syn-
chronize according to their output and input stimuli. Figure 4 shows such an
example. The cells are organized in a linear fashion, where the labels out1 and
out0 of a cells synchronize with the input labels in1 and in0 of the next cell.
At the top of the network, we have the sinoatrial (SA) node, which is the cell
that takes through in1 and in0 the input stimulus of the whole heart, which
can come from its natural pacing or from the actuator of the pacemaker. The
output labels out1 and out0 of the SA node then trigger the input labels of a
second cell. The output of the second cell triggers the input of a third, and so on,
creating a chain of stimuli. The whole chain can be seen as divided in two main
groups, namely atrium and ventricle. The output of the cell at the boundary of
the atrium then produces the output of the whole atrium, which is connected to
the cell at the top of the ventricle, which is called atrioventricular (AV) node.
The AV node may take the pacing coming from the atrium or from the second
actuator of the pacemaker.

We obtain the desired synchronization by a proper renaming of the labels. In
the case of Fig. 4, we use the labels ch0[i], ch1[i], and get[i], for a sequence
of distinct cell indexes i. We rename each get with get[i] and each out0 and
out1 with ch0[i] and ch1[i], using same two labels for in0 and in1 of the next



SA node

Atrium cell 1

Atrium cell 2

AV node

Ventricle cell 1

in1 in0

out1 out0

get

in1 in0

out1 out0

get

in1 in0

out1 out0

get

in1 in0

out1 out0

get

in1 in0

out1 out0

get

ch1[0] ch0[0]

ch1[1] ch0[1]

ch1[2] ch0[2]

ch1[3] ch0[3]

get[0]

get[1]

get[2]

get[3]

get[4]

Fig. 4: Interface of a composition of heart cells.

cell. The dynamics of the hybrid automata composition consists of their parallel
dynamics except mode transitions with common labels, which can be executed
only synchronously. Figure 5 shows such an example, for the case of two cells.
Similarly as before, we enforce the synchronization of the output labels out1 and
out0 of first cell with the input labels in1 and in0 of the second though the labels
ch1 and ch0. In fact, compositions of hybrid automata synchronize on the labels
that are common between the two automata. In fact, for the same reason, we
rename the event get with getA in the first and getB in the second, so to avoid
synchronization on get. The result goes as follows. Initially, both automata are in
their initial modes resting, where each of them follow the respective continuous
dynamics, until either or them take any of the enabled transition in1 or in0.
Note that, even though the transitions labelled by ch1 and ch0 could be taken
by the second automaton, they cannot be taken in the composition with the first.
This is because ch1 and ch0 are in the common alphabet of the two automata
but the first automaton cannot take them. Nevertheless, the transitions of in1
and in0, which can be taken by the first automaton, are only in its alphabet and
therefore can be taken by the composition. The transition labelled by in0 makes
both automata stay in resting, while in1 makes the first switch to stimulus.
After the latter switch, the composition can take in1 and in0 as before, but,
in addition, can also take the common transition labelled by ch1. Upon ch1 the
two automata switch simultaneously to respectively upstroke and stimulus,



in1
in0

ch1
getA

ch0

in0 in1

in1,in0in1,in0

ch1
ch0

out1
getB

out0

ch0 ch1

ch1,ch0ch1,ch0

in1
in0

ch1
getA

ch0

in0 in1

in1,in0in1,in0

ch1
ch0

out1
getB

out0

ch0 ch1

ch1,ch0ch1,ch0

in1
in0

ch1
getA

ch0

in0 in1

in1,in0in1,in0

ch1
ch0

out1
getB

out0

ch0 ch1

ch1,ch0ch1,ch0

in1
in0

ch1
getA

ch0

in0 in1

in1,in0in1,in0

ch1
ch0

out1
getB

out0

ch0 ch1

ch1,ch0ch1,ch0

in1

in0

ch1

getA

ch0

in0 in1

in1,in0in1,in0

Fig. 5: Some configurations of a composition of two heart cells, where the events
out1 and out0 of the left and in1 and in0 of the right cell are renamed to
resp. ch1 and ch0 and get to resp getA and getB. The active modes in each
configuration of two cells are depicted by the black circles. The effect of an
enabled transition is shown as a transition between configurations.

modeling the first cell sending a stimulus to the second cell. The the rest of the
dynamics continues similarly and so does the the composition of more than two
hybrid automata. In fact, the composition of two hybrid automata can be seen as
a single hybrid automaton itself, which in its turn can be composed with another
automaton, and so on, making a composition of arbitrarily many automata.

Hybrid automata can be classified according to the generality of their guards,
differential equations, and difference equations. The more restrictive these equa-
tions are, the more feasible the analysis of the resulting behaviors. Assume that
x is a state vector. A hybrid automaton has piece-wise affine dynamics if all
mode invariants and transition guards have the form x ∈ U , all mode equations
have the form ẋ = Ax+v with v ∈ V , and all transition equations have the form
x′ = Bx+ w with w ∈ W , for matrices A and B, and polyhedra U , V , and W .
The hybrid automaton has piece-wise constant dynamics if A = 0. It is a timed
automaton if A = 0 and V = 1. In a timed automaton, all state components
always advance at the rate of time; they represent “clocks”.

2.2 Timed automata: Modeling the Pacemaker

The pacemaker monitors the pattern of events emitted by the heart and corrects
them via external means when needed. The pacemaker itself is composed of a
number of components, each of which is essentially a simple state-machine pro-
ducing output events triggered by timing constraints. This makes the formalism
of timed automata ideal for the description of these components.

Figure 6 shows the architecture block diagram of the entire model. The pace-
maker senses the voltage peaks of one cell from the atrium and one cell of the



Atrium

Ventricle

Aget

Vact

AactAPacing

SA Node

AP
LRI

AVI VPacing
VP

PVARP

VRP

URI clk

VS

BeatP

HeartInterval Counter

Duration
AS

AS,AR

Fast,Slow

du_end du_begin DDD,VDI

VS

Vget

Aget

Pacemaker

Fig. 6: Overview of the modeled processes: red arrows indicate pacing inputs to
the heart and blue arrows are the monitored output events from the heart.

ventricle through the events Aget and Vget (which are renaming of the respec-
tive get labels), and controls the heart by sending stimuli to the SA node and
the VA node though the labels AP and VP. In particular, upon the occurrence
of AP the timed automaton AP-to-A generates a pulse by sending an event i1

to the SA node and after some fixed time sending i0 indicating the end of the
stimulus pulse. Similarly, VP triggers VP-to-V which in its turn stimulates the
VA node. The events AP and VP are generated by the internals of the pacemaker,
which we introduce in this section.

Fig. 7: Ventricular refrac-
tory period (VRP).

To first informally explain the formalism of
timed automata and how they are modelled in the
tool Uppaal, we will use the VRP process shown in
Fig. 7. Uppaal timed automaton consists of loca-
tions and edges modeling its discrete states and dis-
crete transitions respectively. Locations and edges
have labels. For example, process VRP has an initial
location with a circle O inscribed, which has a name
label Idle. The location VRP has an invariant label
t<=TVRP meaning that the automaton may stay in
VRP only while the clock t value is less or equal to the value of the TVRP constant.
Process VRP may stay in location Idle for arbitrary amount of time because there
is no invariant forcing it to move, it also listens for synchronizations over chan-
nels Vget and VP. The reception over channel Vget transitions it to inter, while
the reception over VP switches it directly to location VRP and reset the clock



t. The location inter has C inscribed to denote that it is committed and the
automaton’s progress cannot be interrupted neither by the time delay nor any
other process, therefore it has to move immediately by taking an edge transition
to location VRP which is labeled with synchronization VS! and update t=0 mean-
ing that it emits a message on channel VS and resets the clock t so the time is
counted from zero in location VRP up to the bound of TVRP. Then process VRP
may move from location VRP back to Idle but only when the guard t>=TVRP is
satisfied, i.e. only after spending at least the amount TVRP of time in location
VRP. As a result, the state of a timed automaton consists of its location and vari-
able values, and there are two kinds of transitions between states: delay (when
clock values increase while satisfying the current invariant) and edge-transitions
when clock values satisfy the guards, synchronize, update the value and satisfy
the target location invariant.

In addition to theoretical definition of timed automata Uppaal implements
a number of practical extensions which make the modeling task easier and more
succinct:

Integer variables. Apart from constants, most programming and modeling
languages use variable value manipulations. Likewise Uppaal allows bounded
integer variables to be used and combined with clock constraints. On one
hand, the value of an integer variable becomes an integral part of the state
of the system. On the other hand, the integer variable value can be used
as a constant in clock constraints because the integer variable value may
change only upon edge-transitions between the timed automata states. An
example of such integer use is demonstrated by TPVARP in Fig. 8d, where the
bound t<=TPVARP is changed by transition from PVARP to Idle. Interestingly,
the bounded integer variables do not increase the theoretical expressiveness
of timed automata, therefore all theoretical results still apply. For example,
we have compressed the representation of Counter and Duration in Fig. 8g
and 8f by encoding the fast? and slow? counting into local integer variables
i (originally [23] enumerated into a number of distinct locations).

Input-output synchronization. In contrast to non-directed multi-label syn-
chronizations in SpaceEx hybrid automata, the synchronizations between
Uppaal processes are directed in the sense that one process is sending with
exclamation mark (e.g. VS!) and the receiving process is listening with ques-
tion mark (VS? respectively). By default, channel synchronizations are hand-
shake, meaning that both sender and receiver must mutually agree for the
transition to take place. Handshake synchronizations happen only in pairs
of processes, i.e. only two processes may participate in the synchronization
at a time, and all possible pairs are considered non-deterministically when
multiple receivers are available.

Broadcast synchronization. In addition Uppaal supports broadcast syn-
chronization where one sender may synchronize with multiple receivers. In
contrast to handshake synchronization, the broadcast synchronization is non-
blocking in a sense that the sender is not required to wait for any receivers
and only the ready receivers participate in the synchronization. While the



broadcast synchronization can be emulated by adding receiving self-loops in
locations where the process does not implement the reception part, but in
practice it is more succinct way of modeling, allows partial order reduction
and verification is more efficient as the tool does not need to consider the
extra edges. All the synchronizations in the pacemaker study use broadcast
channels because non-blocking behavior is closer to how the independent
processes communicate and it is easier to include additional processes with-
out modifying the original behavior, which is useful in adding extra monitors
for diagnostics and verification.

Urgency. Sometimes the modeled process needs to execute several transitions
without delaying in the locations between. We call such locations urgent and
draw a letter U inside to mark that time cannot progress in them.

Atomicity. The process in urgent location may still be interrupted by a transi-
tion in another process even though the time is not allowed to pass. Uppaal
implements a committed location with C inscribed in case an uninterrupted
(“atomic”) sequence of transitions is needed. Committed locations are use-
ful in connecting multiple channel synchronizations at the same time which
would be very cumbersome to model otherwise.

We have reconstructed the pacemaker model from [23] shown in Fig. 8. The
overview block diagram of the processes is shown in Fig. 6 where the heart is
represented by SA Node cell, two atrium and two ventricle cells. The cells can
be stimulated by ch1∗ and ch0∗ channels synchronizations denoting the start
and ending of the stimulus. The heart can be self-stimulating by a SA Node cell
or by a pacemaker by a signal over channel AP (Atrium Pulse). Normally the
atrium cells relay the signal to ventricle cells, but if the stimulus is too weak (or
too short), then the ventricle is stimulated by the pacemaker over VP (Ventricle
Pulse) channel. The pacemaker monitors the activity of the atrium and ventricle
by receiving from the signals over the corresponding channels Aget and Vget. All
channels used in Fig. 8 are of broadcast type, meaning that one sending event
can be sensed by zero or more receivers at once and the sending process is not
blocked by the absence of receivers.

Low Rate Interval (LRI, Fig.8a) maintains the minimum heart rate by
providing pulses to the heart (AP! in DDD mode and VP! in VDI mode) if there
was no signal from atrium (AS?) after the last ventricle pulse for longer than
TLRI−TAVI time interval. The time interval is measured by the clock t which is
reset after the last ventricle pulse (by sensing either VS? or VP?). The LRI also
monitors the mode switching by reacting to inputs VDI? and DDD? and starts
pacing the ventricle (VP!) instead of atrium (AP!).

Atrioventricular Interval (AVI, Fig. 8c) maintains the maximum interval
between the atrium and ventricle activation by issuing ventricle pacing VP! if no
ventricular event received VS? within TAVI time after the last atrial event (AS?
or AP?). The interval is measured by the clock clk shared with Upper Rate
Interval (URI, Fig. 8b) which prevents pacing the ventricle too fast by resetting
clk upon ventricular event (VS? or VP?).



(a) Low Rate Interval (LRI). (b) Upper rate interval (URI).

(c) Atrioventricular Interval
(AVI). (d) Postventricular atrial refractory period (PVARP).

(e) Interval. (f) Duration (compressed).

(g) Counter (compressed).

Fig. 8: Timed automata model of the pacemaker.



Postventricular Atrial Refractory Period (PVARP, Fig. 8d) converts
atrium events A_act? and Aget? into sensed event AS! and filters the sensed
noise during the blanking period (t<=PVAB) after the ventricular event followed
by a refractory period (t<=PVARP). The blocked events are converted to ABlock!
and AR! for advanced diagnostics.

Ventricular Refractory Period (VRP, Fig.7) similarly translates the ven-
tricle peak events over Vget? into sensed events over VS! and filters out by not
re-transmitting for a time interval t<=TVRP after the last event.

We use the same set of constants as in the original publication [23]: TAVI
=150, TLRI=1000, TPVARP=100, TVRP=150, TURI=400, TPVAB=50.

3 Relating and Combining Models

Hybrid automata can be numerically simulated, or formally analyzed. While
simulation generates one behavior at a time, formal analysis can answer questions
about all possible behaviors of a hybrid automaton. The most basic behavioral
analysis question about a hybrid automaton is the reachability question. The
bounded reachability question asks, given two state sets S and T, and a time
bound t, if there is a behavior from a state in S to a state in T of total duration
no more than t. The unbounded reachability question asks, given two sets S and
T, if there is a behavior of any duration from a state in S to a state in T. In
general, both the bounded and unbounded reachability questions are formally
undecidable even for hybrid automata with piece-wise constant dynamics [22].
However, methods and tools have been developed for solving many interesting
instances of these problems [21, 18]. Moreover, both questions can always be
answered algorithmically for the special case of timed automata [6].

Unfortunately, the heart-pacemaker model is not a timed automaton, as heart
cells fall in the class of hybrid automata with piece-wise affine dynamics, and
so does their composition with the pacemaker. On the other hand, if each cell
model was a timed automaton, the whole system would be a timed automaton,
and therefore the verification answer solvable. Can we model each cell with timed
automata, so that by verifying the resulting system we verify the original system
too? To this aim, we exploit the notion of abstraction: if the timed automaton
abstracts the original cell model, then any negative answer for the reachability
question in the abstract composed system implies the same negative answer
in the original composed system. In the following, we construct such a timed
automaton, we explain its relation with the original hybrid automaton, and
we demonstrate how to use SpaceEx to mechanically prove that the former
abstracts the latter.

3.1 A timed abstraction of the heart cell model

We construct a timed automaton A with the same discrete structure of the heart
cell model in Fig. 2 and one clock variable. In the abstract model, the clock is
reset upon entering each mode, and the transition guards out of a mode are



chosen based on the duration of time spent in that mode. Figure 9 shows such
construction. The clock variable is t and the times Tout1, Tout0, and Tget bound

in1

t′ = 0

in0

t ≤ Tout1

t′ = 0 out1
t ≤ Tout1

t′ = 0

get

t ≤ Tget

t′ = 0

out0
t ≤ Tout0

t′ = 0

resting stimulus

upstrokerepolarization

in0

in1, in0

t ≤ Tout0

in1

t ≤ Tout1

in1, in0

t ≤ Tget

Fig. 9: A timed abstraction of the hybrid automaton in Fig. 2.

respectively the duration before the occurrence of the symbols out1, out0, and
get.

The abstraction has been constructed manually, by making the following
observations about the original model in Fig. 2. Initially the cell is in resting

mode, where vx − vy drops towards 0, therefore the invariant 0 ≤ vx − vy ≤ VT
is always satisfied. As a consequence, in1 and in0 can occur at any time: the
first makes a switch to stimulus and the second moves the automaton back to
resting. In stimulus the automaton is also driven by the difference vx − vy
which may lead to upstroke. The time bound Tout1 models the largest time
where vx − vy hits VT and satisfies the guard for out1, i.e., vx − vy ≥ VT . The
symbol out1 may occur any time before Tout1, as well as in1 and in0 which may
happen as long as the invariant 0 ≤ vx− vy ≤ VT of stimulus is satisfied. Upon
the occurrence of out1 the value of vx−vy is exactly VT , the process switches to
upstroke in which it stays until the value of vx−vy hits exactly VO, whose time
is modeled by VO. Similarly, upon get the process switches to repolarization

and stays until it takes out0 when vx − vy hits VR, which must happen no later
than Tout0 time.

Whether the timed automaton in Fig. 9 is an abstraction of the heart cell
model in Fig. 2 requires us to first rigorously define what we mean by abstraction,
namely, what are the features of the original system that are to be conserved
by the abstract system. Second, we need to instantiate the parameters Tout0,
Tout1, and Tget and prove that the so obtained timed automaton abstracts the
original hybrid automaton. We discuss these points in Sections 3.2 and 3.3. For
the time being, the construction of the timed abstraction relies on the intuition
and the expertise of the designer. In this phase, the only formal requirement is
that the timed automaton needs to deterministic, so that in the next phase we
can construct its complement. A timed automaton is deterministic if at every



mode every pair of transitions with common symbol have disjoint guards [6].
The timed abstraction of Fig. 9 is deterministic simply because at every mode
each symbol has at most one switch.

3.2 The timed language of hybrid automata

A hybrid automaton A abstracts a hybrid automaton B when all observable
behaviors of the latter are also observable behaviors of the former. The observ-
able behaviors are the features of the system dynamics that we need to observe
in order to decide whether a specification is satisfied. The more detailed the
observable behaviors, the harder is constructing an abstraction, but the more
sophisticated are the properties that we can verify. For verifying properties such
as Tachycardia, Bradycardia, and so on, we want to observe sequences of labels
σ = σ0σ1 . . . with the exact times τ = τ0τ1 . . . at which each of these events
has occurred. Each of such pairs of sequences (σ, τ) is called a timed word.
For instance, the word that repeats the pattern in1, out1, get, out0 is a timed
word when coupled with the times of staying respectively in modes resting,
stimulus, upstroke, and repolarization, repeatedly. The set of all the timed
words of the hybrid automaton H is called its timed language LH .

Abstraction with respect to timed languages can be phrased as timed lan-
guage inclusion, that is to say that the timed automaton A abstracts the hybrid
automaton H if LH ⊆ LA. Alternatively, one can prove that A abstracts H by
saying that there does not exist a timed word of H that is not a timed word
of A. This is indeed a reachability question for the composition of H with the
complement of A, which can be tackled by SpaceEx. To this aim, we first con-
struct the complement automaton for A, i.e., the timed automaton for which
all timed words from language LA end up in accepting mode (corresponding
to modes in the original automaton) and any other word end up hitting some
auxiliary rejecting mode. Then, we use SpaceEx to search for any timed word
of H that is rejected by the complement automaton of A, namely a word of their
composition that hits a rejecting mode of the latter. If no such word is found,
then we can conclude that A abstracts H.

The timed abstraction A is deterministic. To complement a deterministic
timed automaton we need first to add dummy transitions so to make the automa-
ton accept any timed word (on the same alphabetΣ = {in0, in1, out0, out1, get}),
yet remaining deterministic. Figure 10 shows the result. From mode resting

only in1 and in0 can be received, therefore we add a dummy transition, i.e., a
transition to a dummy mode, which receives any other symbol, i.e., out1, out0,
and get. From stimulus, in1, in0, and out1 can be received and can be re-
ceived as long as t ≤ Tout1, therefore we add a dummy transition with guard
t > Tout1 that receives such events, so as to ensure all guards of transitions
with common symbol to be disjoint and maintain the automaton deterministic.
The symbols out0 and get cannot be received at all from stimulus, therefore
we add a dummy transition with unconstrained guard. Similarly, we make the
same construction on modes upstroke and repolarization. Finally, one can
observe that every trajectory that ends in any dummy mode corresponds to a



in1

t′ = 0

in0

t ≤ Tout1

t′ = 0 out1
t ≤ Tout1

t′ = 0

get

t ≤ Tget

t′ = 0

out0
t ≤ Tout0

t′ = 0

r1

r2r3

r0

t > Tout1

in1, in0, out1

out0, get

t > Tget

in1, in0, get

out1, out0

t > Tout0

in1, in0, out0

out1, get

out1, out0, get

Σ Σ

ΣΣ

in0

in1, in0
t ≤ Tout0

in1

t ≤ Tout1

in1, in0
t ≤ Tget

Fig. 10: Complement of the timed abstraction in Fig. 9.

timed word that is not in LA. The dummy modes are those that recognise the
complement language, thus we mark them as rejecting modes.

In summary, we formulate the question of whether the timed abstraction in
Fig. 9 abstracts the heart cell model in Fig. 2 by asking SpaceEx whether the
composition of the heart cell model in Fig. 2 with the complement automaton in
Fig. 10 can reach any of the rejecting modes. The result is a reachability question
on hybrid automata with affine dynamics.

3.3 Verifying the Abstraction using SpaceEx

SpaceEx is a modeling framework for the composition of hybrid automata that
collects several reachability analysis techniques, which are called scenarios. We
can divide the currently available scenarios in three main categories: simulation
based, support function based, and the polyhedra based scenarios. The simula-
tion based scenario (whose SpaceEx keyword is simu) generates time-bounded
sample trajectories, and can be used to reject an abstraction, but not to verify
one. The support function (which comes in SpaceEx with the two variants supp
and stc) and the polyhedra based (keyword phaver) scenarios perform reacha-
bility analysis by generating sequences of polyhedra that over-approximate the
whole space of reachable states and both are possibly suitable for verifying an
abstraction. In fact, when they answer that all rejecting modes are unreachable,
then the rejecting modes are actually unreachable, and the abstraction is proven.
The converse is not necessarily true and, moreover, termination is not guaranteed
either. For this reason, successfully concluding an abstraction proof requires sev-
eral trial and error attempts in tuning the parameters and the multiple heuristic
options of SpaceEx.



We use the polyhedral based scenario which is also know as the PHAVer
scenario. The PHAVer scenario over-approximates the continuous flow of every
mode by piece-wise constant differential inclusions [17]. In other words, it turns
affine dynamics of the form ẋ = Ax+ v with v ∈ V into differential inclusions of
the form ẋ ∈ U , where U is a set the contains all values that the derivative ẋ can
possibly take. Both such transformation and the symbolic reachability analysis
on the so obtained hybrid automaton are then done by quantifier elimination,
e.g., by the Fourier Motzkin algorithm [4].

The main challenge is then to choose the time bounds Tout1, Tout0, and Tget.
Indeed, if we let vx and vy take arbitrary negative values it is impossible to find
finite bounds, therefore we add the extra invariant vx, vy ≥ 0 to all modes of
the heart cell. Then, we proceed as follows. First, we set all constraints of the
heart cell model from the original article [31] (except for ist, which isn’t specified
there). Second, we decide a value for ist and third, we search for tight enough

ax ay by cx cy dx dy VR VT VO

-0.98 -0.16 -0.16 15 1.4 -0.98 -0.16 10 10 83

Table 1: Parameters taken from [31] for the heart cell model.

values for Tout1, Tout0, and Tget until SpaceEx concludes that all rejecting modes
are unreachable. Table 2 shows a few attempts to prove reachability of any of
the rejecting modes r0,r1, r2, or r4. The parameters were chosen manually, and

Table 2: Attempts of proving that the timed automaton of Fig. 9 abstracts the
hybrid automaton of Fig. 2. The answer indicates the reachable rejecting modes
of the complement automaton of Fig. 5 (None indicates a successful proof).

ist Tout1 Tout0 Tget Answer

10 1 1 1 r3
10 1 1 10 None
10 0.1 0.1 1 r1, r2, r3
10 1 0.5 10 None
10 1 0.5 7.5 None

ist Tout1 Tget Tout0 Answer

1 1 0.5 7.5 r1
1 10 0.5 7.5 None

100 10 0.5 7.5 None
100 0.01 0.5 7.5 r1
100 0.1 0.5 7.5 None

SpaceEx converged on each of these proofs in less than a second.

3.4 Abstraction Refinement

An abstraction captures specific aspects of the original model while it may ignore
others, and in some cases, an abstraction may be too coarse for proving a prop-
erty. For instance, the timed automaton of Fig. 9 captures the upper bounds of



the transition times for the labels out1, out0, and get, while it ignores the lower
bounds. Without a lower bound for the duration of an output stimulus, proper-
ties such as the efficient propagation of a signal through cells (see Sec. 4.3) cannot
be proven. In fact, often an abstraction requires to be adapted to the property
of interest. This is usually done incrementally, by adding a few important details
at a time, through a process of abstraction refinement. In the following, we show
how to refine our abstraction by exploiting the compositionality of hybrid and
timed automata.

The timed automaton of Fig. 11 captures the requirement that output stim-
ulus of a heart cell should last at least time Tstim. As previously, we compute its

out1

t′lb = 0

out0

tlb ≥ Tstim

in0,in1 in1,in0,get

Fig. 11: Abstraction for the lower bound between out1 and out0.

complement, and we use SpaceEx to prove that for certain parameters of the
heart cell model, certain lower bounds are satisfied (see Tab. 3), so obtaining
a second abstraction for the original heart cell. We use the new abstraction B
to refine the previous abstraction A by composing them together, obtaining the
timed automaton in Fig. 12, which is an abstraction of the original system too.
Table 3 shows the proven parameters. In particular, for the original model (pa-

Table 3: Proven parameters for upper and lower bounds abstractions (Fig. 9 and
11) w.r.t. different versions of a heart cell.

ax ay by cx cy dx dy VR VT VO Vmax ist Tout1 Tget Tout0 Tstim

-0.98 -0.16 -0.16 15 1.4 -0.98 -0.16 10 10 83 ∞ 10 1 0.5 7.5 0
-0.98 -0.16 -0.16 15 1.4 -0.98 -0.16 5 10 83 100 10 1 0.5 7.5 0.86
-0.98 -0.16 -0.16 15 1.4 -0.83 -0.16 5 10 83 100 10 1 0.5 19 1.001

rameters from Tab. 1, first line in Tab. 3) we could not prove any lower bound,
unless we reduced VR and additionally specified a global invariant for which
x and y cannot be greater than a maximum voltage Vmax. For instance, with
Vmax = 100 and VR = 5, we have a lower bound of 0.86. Indeed, the lower bound
for the stimulus length depends on Vmax, VR and the coefficient dx, e.g., with
dx = −0.83 we have Tstim = 1.001.



In summary, we constructed time abstractions for a heart cell and we for-
mally proved that they indeed abstract its timed language. The abstraction
question turns out to be a reachability question on a heart cell composed with
the complement of its timed abstraction, which is a rather small system. We
employ SpaceEx on such a small problem, so we can modify the whole heart-
pacemaker model by substituting each cell with an abstraction or a composition
of them. The whole model is now a timed automaton, which can be verified by
Uppaal.

4 Verifying Temporal Requirements

Several behavioural properties of (composite) timed and hybrid automata mod-
els may be expressed as simple reachability properties. This is already illustrated
previously in Section 3.2, where we saw that language inclusion between the “ex-
act” hybrid automaton model H of a heart cell and a proposed timed automaton
abstraction A could be stated as a simple reachability property of rejecting lo-
cations in a product between H and the complement of A. However, it may
often be more convenient to express desired properties of a timed or hybrid au-
tomaton directly as formulas of temporal logic, thus permitting properties to be
combined using boolean connectives. In fact the whole spectrum of temporal-
logic has been extended to the setting of timed labelled transition systems, with
model checking suitably extended to timed automata, see e.g. [10]. In this section
we demonstrate how timed automata verification using Uppaal may be used in
establishing key properties of the pace-maker.

4.1 Timed Automaton of a Heart Cell in Uppaal

Figure 12 shows the Uppaal version of the heart cell timed automaton abstract
model of Fig. 9. The locations in the timed automaton match their correspond-
ing modes in the hybrid automaton and the timings are taken from Table 3 and
converted into microseconds as shown in Fig. 12b. Note that Tstim was deter-
mined as a minimum delay between out1! and out0! events, therefore we use
an extra clock t_lb to enforce this constraint. This lower bound on the repolar-
ization time turned out to be important to ensure a successful signal handover
as verified in Section 4.3.

4.2 Requirement Specifications

The model checker Uppaal supports verification of requirements expressed within
a fragment of Timed Computation Tree Logic (TCTL). Among TCTL properties
we consider here the following:

– A�ϕ, which is satisfied if any reachable state satisfies ϕ (Invariance),
– A�≤Tϕ, which is satisfied if any state reachable within T time-units satisfies
φ (Time-bounded Invariance),



(a) Uppaal timed automaton.

const int Tget = 500;
const int Tout1 = 1000;

// Without lower bounds:
const int Tout0 = 7500;
const int Tstim = 0;

// With lower bound:
const int Tout0 = 19000;
const int Tstim = 1001;

(b) Parameters.

Fig. 12: Abstract model of a heart cell.

– A♦ϕ, which is satisfied if on any path the properties ϕ is (eventually) satis-
fied at some point (Eventual),

– A♦≤Tϕ which is satisfied if on any path the property ϕ is satisfied within
T time-units ϕ (Time-Bounded Eventual),

– ϕ ≤T ψ, which requires than whenever a state is reached satisfying ϕ, then
any path from this state must eventually satisfy ψ – and within a total of T
time-units. Logically, the (time-bounded) leads-to property is equivalent to
A(ϕ⇒ A♦≤Tψ) (Time-Bounded Leads-to).

For deterministic timed labelled transition systems, it may easily be shown that
all of the above properties – as they all quantify universally over execution
sequences out of a state – are preserved by language inclusion. Thus, if LH ⊆ LA

and A has been verified to satisfy a TCTL property ϕ of the above type, then
it may readily be concluded that the “exact” model H also satisfies ϕ.

Moreover, as demonstrated in [1] all of the above properties may be expressed
directly as a reachability property — i.e. invariance properties — of the given
timed automaton composed with a monitor corresponding to the property.

4.3 Healthy Heart Requirements

Figure 13 shows the state evolution of 10 heart cell timed automata connected
in series. In the beginning all cells are in resting (red bar), then the first cell is
stimulated and moves to stimulus (yellow bar). After a short while the first cell
stimulates the second one and moves to upstroke (green bar), then it moves to
repolarization (blue bar) and back to resting (red bar). The second cell then
stimulates the third and so on.

A healthy heart should propagate the signal all the way from SA node to
atrium and then ventricle. This requirement can be formulated as the following
leads-to property:

A�(ch1[0]!→ A♦ ch1[N]!)



gantt {
C(i:id_t):
cells(i).resting −> red,
cells(i).stimulus −> yellow,
cells(i).upstroke −> green,
cells(i).repolarization −> blue;

}

(a) Gantt chart declaration. (b) With lower bounds. (c) Without.

Fig. 13: Gantt chart of state evolution of 10 cell automata from Fig. 12.

which says that for every stimuli of the first cell (ch1[0]!) we should eventually
observe the signal at the end of the chain (ch1[N]!), where N is the number of
cells. Uppaal verifies that this property holds when Tstim>Tout1, i.e. the lower
bound of being in repolarization is greater than the time spent in stimulus,
and the signal propagates successfully just like in the Gantt chart in Fig. 13b.
It takes 0.2s to verify an instance of four cells, 6.8s for five and 28min for six,
which shows signs of the state space explosion in terms of the number of processes
due to non-deterministic behavior. Interestingly the property is not satisfied if
the cell stays in repolarization longer than in stimulus, i.e. Tstim>Tout1,
because the signaling cell may go from upstroke to repolarization, stop the
stimulus and bring the next cell back to resting, thus disrupting the signal.
One such particular scenario is visualized in Fig. 13c: the stimulus of cell
(2) is interrupted by cell(1) by a quick move back to resting before cell
(2) reaches upstroke, hence cell(3) stays in resting and the signal is lost.
We conclude that the relation between maximum delay in stimulus and total
delay in upstroke and repolarization is crucial for correct signal propagation
through heart cell network.

In addition to checking the signal propagation we can also estimate the min-
imum and maximum delay time between the start and end of the signal by using
the duration monitor automaton and queries shown in Fig. 14. The infimum
and supremum queries instruct Uppaal to record the minimum and maximum
values of clock t when the automaton in the corresponding locations Min and
Max. Note that the automaton always stays in location Max in between the from!
and till! events, therefore the supremum of t corresponds to the time duration
between those events. And the automaton visits Min when t has its maximum
value, therefore the infimum of t in Min corresponds to the shortest observed
duration between events.

In case of our chain of heart cell timed automata – using the above pattern
– the duration between ch1[0]! and ch1[N]! is found to be bounded by the
interval of [0, N ]ms, where N is the number of cells in series. Due to congru-



(a) MDuration.

inf{MDuration.Min}: MDuration.t
sup{MDuration.Max}: MDuration.t

(b) Queries for infimum and supremum.

Fig. 14: Estimating the delay between from! and till! events.

ence properties of abstraction, this bound is guaranteed to be valid also for the
composition of hybrid heart cells in Fig. 5.

4.4 Abstraction of Cell Composition

Once we have estimated the duration of a signal travel through the chain of cells,
we can model the entire chain as one automaton re-transmitting the signal with
a delay. By replacing a chain of cells with one process we reduce the verification
effort significantly without losing the precision. We model the atrium and the
ventricle as separate processes representing a sequence of individual heart cells.
Figure 15a shows a healthy atrium which relays its activation signal to the
recipient (ventricle and pacemaker) by delaying 150ms. We model an atrium
which may loose a signal by taking an extra transition without notifying the
recipient in Fig 15a to reflect abnormal behavior. The ventricle part of the heart
is modeled likewise. The sinoatrial node is responsible for triggering the heart
beating process and is modelled in Fig. 15b. In principle, healthy SANode may
beat with interval of 500-2000ms (30-120bpm), but a faulty one may beat more
or less frequently or stop beating altogether, thus we do not put any constraints
to allow all possible (healthy and faulty) behavior to allow a pacemaker to do
its job, there the verification will cover all possible scenarios (failure may occur
at any time, in SANode, atrium or ventricle). The result is a sequence of signals:
the SANode stimulates atrium and atrium stimulates ventricle, but atrium and
ventricle may also be stimulated by a pacemaker, thus we also add a pacing
process which multiplexes the pacing events (AtrioP and VentriP) with heart
events (BeatP and Aget) into atrium (Aact) and ventricle (Vact) stimuli as shown
in Fig. 15c.

4.5 Pacemaker Requirements

The pacemaker is required not to issue ventricle pace events (VP!) for at least
TURI time units since the last ventricle pulse (VP!) or the ventricle sense (VS!)
events. This requirement can be formulated into the following TCTL property:

A�((VS! ∨ VP!)→ A�≤TURI¬VP!)



(a) Atrium. (b) SANode. (c) Pacing.

Fig. 15: Abstract heart model.

This property expresses that the action VP! may only occur after a time-
separation of at least TURI time-units from a previous VP! of VS! action. Dually,
the requirement that the interval between two ventricular events (either VP! or
VS!) should be less than TLRI can be expressed as the following property:

(VS! ∨ VP!) ≤TLRI (VS! ∨ VP!)

which says that the actions VP! and VS! must occur with at most a time-
separation of TLRI time-units.

Uppaal implements TCTL referring to system states rather than synchro-
nization events, therefore the above properties are converted into the event-
monitoring automata (Fig. 16a and Fig. 16b respectively) and the requirements
are reformulated in terms of monitoring automata locations and clock values.
The monitor transitions are labeled with VP? and VS? synchronizing with the
corresponding events VP! and VS!, and the local clocks t are reset accordingly,
so that the value of the local clock t in locations interval and two_a corre-
sponds to the time duration between two successive events. The property then
verifies that the duration is within bounds U.t>=TURI and L.t<=TLRI.

The model with abstracted heart cell chain had too large state space to
verify due too many non-deterministic processes in the heart. Interestingly the
unrestricted “random” heart model (as described in [23]) takes much less re-
sources as it does not need to remember the complex heart state. We used a
heart model with arbitrary rate (0,∞) which may beat at any time or not at
all. Such heart captures all possible heart behaviors and hence verification pro-
vides a much stronger safety guarantee than with the more realistic and detailed

A[] (U.interval imply U.t>=TURI)

(a) Monitor for upper rate limit.

A[] (L.two_a imply L.t<=TLRI)

(b) Monitor for lower rate limit.

Fig. 16: Automata and queries for timed properties from [23].



Table 4: Resources used by Uppaal to verify properties from Fig. 16.

Pacemaker URL LRL
model time memory result time memory result

Basic DDD 0.01s 5.37MB OK 0.01s 5.37MB OK
DDD-VDI 129.57s 248.26MB OK 148.58s 267.78MB Not OK

heart model. Table 4 shows that the basic DDD pacemaker model is simple
enough that it hardly takes any time to verify (0.01s, 5.37MB). The DDD-VDI
pacemaker includes counters and thus the behavior is much more complicated
leading to more verification effort (129.57s, 248.26MB). We found that the lower
rate limit property does not hold with TLRI bound on more complex DDD-VDI
pacemaker (the result is “Not OK”), but the basic DDD satisfies the lower rate
limit with twice as large 1500 bound, meaning that the pacemaker may delay
longer before pacing, but the bound is still reasonable (one pulse per 1.5s).

5 Future Directions and Challenges

As illustrated by the case study presented in this paper, model-based design
and verification is a promising approach to the development of cyber-physical
systems in a principled manner, and the foundations of this methodology lie in
cross-fertilization of ideas from mathematical modeling and algorithmic analy-
sis. As systems keep getting more and more complex, and society increasingly
relies upon the internet of things, advances in tools for designing such systems
are crucial to ensuing the safe and reliable operation of systems. This calls for
continued research in core areas of formal methods such as identification of an-
alyzable design abstractions, analysis techniques, and scalability of tools. We
conclude this paper by highlighting some directions for future research.

Scalability: Given the computational intractability of the computational prob-
lems in formal verification, developing tools that can analyze real-world sys-
tems will always remain a challenge. The experience with tools such as Uppaal
demonstrates that small steps in advancing the scalability collectively contribute
towards impressive results over the long haul. For the verification of hybrid sys-
tems, tools based on robustness analysis offer promising opportunities [16, 15].
Robust analysis means that results obtained should not be too sensitive with
respect to the actual quantities (timing, voltages, energy, etc.) used in the under-
lying model. Efforts on identifying metrics that will ensure continuity of various
behavioral properties are currently being researched for a number of quantitative
modeling formalisms. As illustrated in Section 3, abstraction is an effective way
of reducing the complexity of a system, and developing techniques for construct-
ing abstractions automatically remains a challenge.

Quantitative analysis: Traditionally, models and techniques used for estab-
lishing correctness and for evaluating performance have been disjoint. In our



pacemaker case study, beyond functional correctness of the control algorithm,
we are also interested in estimating, for instance, the average energy used by the
pacemaker. A promising new direction in formal methods research these days is
the development of probabilistic models, with associated tools for quantitative
evaluation of system performance along with correctness (see [24]).

Applications: Given the scalability challenges, formal methods for the design
and analysis of cyber-physical systems are not yet widely applicable. Thus, iden-
tifying application domains and problems where the current techniques and tools
can be applied effectively is itself a challenge that requires an understanding of
formal methods as well as the application domains. As our example of pace-
maker suggests, medical cyber-physical systems is a promising domain, and other
interesting recent case studies include an infusion pump and an artificial pan-
creas [28]. Another promising domain of application is ensuring the safety of
controllers used in autonomous vehicles [25].

Data-driven models: As our case study illustrates, a key step is the construc-
tion of the heart model. Mathematical models of physical systems are hard to
obtain, but increasingly, due to the rapid proliferation of sensors, lots of data is
available. This leads to a new research question: given the pacemaker algorithm
and the property that we want to verify, can we construct a patient-specific model
of the heart derived from the sensory data obtained from a patient? Deriving
models suitable for formal analysis from data is a challenging, and relatively
unexplored, research area.

References

1. L. Aceto, P. Bouyer, A. Burgueño, and K. G. Larsen. The power of reachability
testing for timed automata. In V. Arvind and S. Ramanujam, editors, Foundations
of Software Technology and Theoretical Computer Science: 18th Conference, Chen-
nai, India, December 17-19, 1998. Proceedings, pages 245–256, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

2. R. Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.
3. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-

mation and Computation, 104(1):2–34, 1993.
4. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995.

5. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

6. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

7. R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of
hybrid systems. Proceedings of the IEEE, 88(7):971–984, 2000.

8. G. Behrmann, A. David, K. Larsen, P. Pettersson, and W. Yi. Developing uppaal
over 15 years. Software – Practice and Experience, 41(2):133–142, 2011.

9. G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In M. Bernardo
and F. Corradini, editors, Formal Methods for the Design of Real-Time Systems:



International School on Formal Methods for the Design of Computer, Communi-
cation, and Software Systems, Bertinora, Italy, September 13-18, 2004, Revised
Lectures, pages 200–236, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

10. P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, J. Ouaknine, and J. Worrell.
Model checking real-time systems. In E. Clarke, T. Henzinger, and H. Veith,
editors, Handbook of Model Checking. Springer, 2017. To appear.

11. T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Quantitative verification
of implantable cardiac pacemakers over hybrid heart models. Information and
Computation, 236:87 – 101, 2014. Special Issue on Hybrid Systems and Biology.

12. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In Proc.
19th ACM Symposium on Principles of Programming Languages, pages 343–354,
1992.

13. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
14. P. Derler, E. A. Lee, and A. L. Sangiovanni-Vincentelli. Modeling cyber-physical

systems. Proceedings of the IEEE, 100(1):13–28, 2012.
15. P. S. Duggirala, C. Fan, S. Mitra, and M. Viswanathan. Meeting a powertrain veri-

fication challenge. In Computer Aided Verification - 27th International Conference,
LNCS 9206, pages 536–543. Springer, 2015.

16. G. E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verification of
automotive control applications using s-taliro. In IEEE American Control Confer-
ence, pages 3567–3572, 2012.

17. G. Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In
International workshop on hybrid systems: computation and control, pages 258–
273. Springer, 2005.

18. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid systems.
In Proc. 23rd International Conference on Computer Aided Verification (CAV),
LNCS 6806, pages 379–395. Springer, 2011.

19. T. Henzinger and J. Sifakis. The embedded systems design challenge. In FM 2006:
14th International Symposium on Formal Methods, LNCS 4085, pages 1–15, 2006.

20. T. A. Henzinger. The theory of hybrid automata. In Verification of Digital and
Hybrid Systems, pages 265–292. Springer, 2000.

21. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. In International Conference on Computer Aided Verification, pages 460–
463. Springer, 1997.

22. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 57(1):94 – 124, 1998.

23. Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling and ver-
ification of a dual chamber implantable pacemaker. In Tools and Algorithms for
the Construction and Analysis of Systems - 18th International Conference, LNCS
7214, pages 188–203. Springer, 2012.

24. M. Kwiatkowska. Quantitative verification: models, techniques, and tools. In Proc.
ACM SIGSOFT Symp. on Foundations of Software Engineering, pages 449–458,
2007.

25. K. G. Larsen, M. Mikučionis, and J. H. Taankvist. Safe and optimal adaptive
cruise control. In R. Meyer, A. Platzer, and H. Wehrheim, editors, Correct System
Design: Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th
Birthday, Oldenburg, Germany, September 8-9, 2015, Proceedings, pages 260–277,
Cham, 2015. Springer International Publishing.

26. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, Oct. 1997.



27. E. A. Lee. What’s ahead for embedded software. IEEE Computer, pages 18–26,
2000.

28. I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A. King, M. Mullen-
Fortino, S. Park, A. Roederer, and K. Venkatasubramanian. Challenges and re-
search directions in medical cyber-physical systems. Proceedings of the IEEE,
100(1):75–90, 2012.

29. M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam. Safety-critical medical
device development using the upp2sf model translation tool. ACM Trans. Embed.
Comput. Syst., 13(4s):127:1–127:26, Apr. 2014.

30. M. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, 1994.

31. P. Ye, E. Entcheva, R. Grosu, and S. A. Smolka. Efficient modeling of excitable
cells using hybrid automata. In Proceedings of Computational Methods in System
Biology, pages 216–227, 2005.


